Processing math: 100%

Solution Manual of "Elementary Linear Algebra": 2. Matrices (Part-2)

This document is the solution manual of “Elementary Linear Algebra” which was written by K. R. Matthews, University of Queensland.
The free printable PDF format lecture can be Downloaded Here


Summary
  • Non-singular matrix
    A matrix A\in M_{n\times n}(F) is called non-singular or invertible if there exists a matrix B\in M_{n\times n}(F) such that AB=I_n=BA.
    Any matrix B with the above property is called an inverse of A. If A does not have an inverse, A is called singular.
  • Inverses are unique
    If A has inverse B and C, then B=C.
    (Since B=BI_n=B(AC)=(BA)C=I_nC=C)
  • If A and B are non-singular matrices of the same size, then so is AB. Moreover (AB)^{-1}=B^{-1}A^{-1}.

    (Since (AB)(B^{-1}A^{-1})=ABB^{-1}A^{-1}=AI_nA^{-1}=I_n)
    The above result generalizes to a product of m non-singular matrices: If A_1,\cdots, A_m are non-singular n\times n matrices, then the product A_1\cdots A_n is also non-singular. Moreover (A_1\cdots A_m)^{-1}=A_m^{-1}\cdots A_{1}^{-1}.
  • Let A=\begin{bmatrix}a& b \\ c&d \end{bmatrix} and \Delta=ad-bc\neq0. Then A is non-singular. Also A^{-1}=\Delta^{-1}\begin{bmatrix}d & -b\\ -c &a \end{bmatrix}
  • If the coefficient matrix A of a system of n equations in n unknown is non-singular, then the system AX=B has the unique solution X=A^{-1}B.
  • Cramer's rule for 2 equations in 2 unknowns
    The system \begin{cases}ax+by=e \\ cx+dy=f \end{cases}
    has a unique solution if \Delta=\begin{vmatrix}a & b\\ c&d \end{vmatrix} \neq0, namely x={\Delta_1\over\Delta},\ y={\Delta_2\over\Delta}
    where \Delta_1=\begin{vmatrix}e & b \\ f & d \end{vmatrix},\ \Delta_2=\begin{vmatrix}a & e \\ c & f \end{vmatrix}.
    Based on the above theorem, we have the following corollary:
    The homogeneous system \begin{cases}ax+by=0 \\ cx+dy=0 \end{cases}
    has only the trivial solution (i.e. zero) if \Delta=\begin{vmatrix}a & b\\ c & d \end{vmatrix}\neq0.
  • Let A be a square matrix. If A is non-singular, the homogeneous system AX=0 has only the trivial solution. Equivalently, if the homogeneous system AX=0 has a non-trivial solution, then A is singular.
    (Since if A is non-singular then it has inverse matrix and hence AX=0\Rightarrow X=A^{-1}0=0)
  • Elementary row matrices
    To each of the three types of elementary row operation, there corresponds an elementary row matrix, denoted by E_{ij},\ E_{i}(t),\ E_{ij}(t):
    • E_{ij}, (i\neq j) is obtained from the identity matrix I_n by interchanging rows i and j.
    • E_{i}(t) is obtained by multiplying the i-th row of I_n by t.
    • E_{ij}(t),\ (i\neq j) is obtained from I_n by adding t times the j-th row of I_n to the i-th row.
  • If a matrix A is pre-multiplied by an elementary row matrix, the resulting matrix is the one obtained b performing the corresponding elementary row-operation on A.
  • Elementary row-matrices are non-singular. Indeed,
    • E_{ij}^{-1}=E_{ij}
    • E_{i}^{-1}(t)=E_{i}(t^{-1})
    • E_{ij}^{-1}(t)=E_{ij}(-t)
  • Let A be non-singular n\times n matrix. Then
    • A is row-equivalent to I_n,
    • A is a product of elementary row matrices.
  • Let A be n\times n and suppose that A is row-equivalent to I_n. Then A is non-singular and A^{-1} can be found by performing the same sequence of elementary row operation on I_n as were used to convert A to I_n.
    (Since I_n=E_r\cdots E_1A=BA\Rightarrow A^{-1}=B=(E_r\cdots E_1)I_n, which means A^{-1} is obtained from I_n by performing the same sequence of elementary row operations as were used to convert A to I_n.)
    An important corollary is that if A is singular, then A is row-equivalent to a matrix whose last row is zero.
  • The transpose of a matrix
    Let A be an m\times n matrix. Then A^{t}, the transpose of A, is the matrix obtained by interchanging the rows and columns of A. In other words if A=[a_{ij}], then (A^{t})_{ji}=a_{ij}. Consequently A^{t} is n\times m.
    • (A^{t})^{t}=A;
    • (A\pm B)^{t}=A^{t}\pm B^{t} if A and B are m\times n;
    • (sA)^{t}=sA^{t} if s is a scalar;
    • (AB)^{t}=B^{t}A^{t} if A is m\times n and B is n\times p;
      (Suppose A=[a_{ij}],\ B=[b_{jk}], we have ((AB)^{t})_{ki}=(AB)_{ik}=\displaystyle\sum_{j=1}^{n}a_{ij}b_{jk} = \sum_{j=1}^{n}(B^{t})_{kj}(A^{t})_{ji}=(B^{t}A^{t})_{ki})
    • If A is non-singular, then A^{t} is also non-singular and (A^{t})^{-1}(A^{-1})^{t};
    • X^{t}X=x_1^2+\cdots+x_n^2 if X=[x_1,\cdots,x_n]^{t} is a column vector.
  • Symmetric matrix
    A matrix A is symmetric if A^{t}=A. In other words A is square (say n\times n) and a_{ji}=a_{ij} for all 1\leq i \leq n,\ 1 \leq j \leq n. Hence A=\begin{bmatrix}a&b\\b&c \end{bmatrix}
    is a general 2\times2 symmetric matrix.
  • Skew-symmetric matrix
    A matrix A is called skew-symmetric if A^{t}=-A. In other words A is square (say n\times n) and a_{ji}=-a_{ij} for all 1\leq i \leq n,\ 1 \leq j \leq n (note that a_{ii}=0). Hence A=\begin{bmatrix}0&b\\-b&0 \end{bmatrix}
    is a general 2\times2 skew-symmetric matrix.
  • Normal equations
    Suppose AX=B represents a system of linear equations with real coefficients. The associated system A^{t}AX=A^{t}B is always consistent and that the any solution of this system minimize the sum r_1^2+\cdots+r_m^2, where r_1,\cdots,r_m (the residuals) are defined by r_i=a_{i1}x_1+\cdots+a_{in}x_n-b_i
    for i=1,\cdots, m. The equations represented by A^{t}AX=A^{t}B are called normal equations corresponding to the system AX=B and any solution of the system of normal equations is called a least squares solution of the original system. More details can be found at HERE.

Problems 2.7

1. Let A=\begin{bmatrix}1 & 4\\ -3 &1 \end{bmatrix}. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.

Solution:
\begin{bmatrix}1& 4& 1& 0\\ -3 &1 &0& 1 \end{bmatrix}\Rightarrow R_2+3R_1 \begin{bmatrix}1& 4& 1& 0\\ 0 &13 &3& 1 \end{bmatrix}
\Rightarrow {1\over13}R_2 \begin{bmatrix}1& 4& 1& 0\\ 0 &1 &{3\over13}& {1\over13} \end{bmatrix} \Rightarrow R_1-4R_2 \begin{bmatrix}1& 0& {1\over13}& -{4\over13}\\ 0 &1 &{3\over13}& {1\over13} \end{bmatrix}
Thus A is non-singular and A^{-1}= \begin{bmatrix}{1\over13}& -{4\over13}\\ {3\over13}& {1\over13} \end{bmatrix}.
Next, we have I_2=E_{12}(-4)E_{2}({1\over13})E_{21}(3)A
\Rightarrow A^{-1}=E_{12}(-4)E_{2}({1\over13})E_{21}(3)
\Rightarrow A=(A^{-1})^{-1}=(E_{12}(-4)E_{2}({1\over13})E_{21}(3))^{-1}
=E_{21}(3)^{-1}E_{2}({1\over13})^{-1}E_{12}(-4)^{-1} = E_{21}(-3)E_{2}(13)E_{12}(4)

2. A square matrix D=[d_{ij}] is called diagonal if d_{ij}=0 for i\neq j. (That is the off-diagonal elements are zero.) Prove that pre-multiplication of a matrix A by a diagonal matrix D results in matrix DA whose rows are the rows of A multiplied by the respective diagonal elements of D. State and prove a similar result for post-multiplication by a diagonal matrix.
Let \text{diag}(a_1,\cdots,a_n) denote the diagonal matrix whose diagonal elements d_{ii} are a_1, \cdots, a_n, respectively. Show that \text{diag}(a_1,\cdots,a_n)\text{diag}(b_1,\cdots,b_n)=\text{diag}(a_1b_1,\cdots,a_nb_n)
and deduce that if a_1\cdots a_n\neq0, then \text{diag}(a_1,\cdots,a_n) is non-singular and (\text{diag}(a_1,\cdots,a_n))^{-1}=\text{diag}(a_1^{-1},\cdots,a_n^{-1}).
Also prove that \text{diag}(a_1,\cdots,a_n) is singular if a_i=0 for some i.

Solution:
Let D=[d_{ij}] be an m\times m diagonal matrix and let A=[a_{jk}] be an m\times n matrix. Thus (DA)_{ik}=\sum_{j=1}^{m}d_{ij}a_{jk} = d_{ii}a_{ik}
for i=1,\cdots,m as d_{ij}=0 while i\neq j. It follows that the i-th row of DA is obtained by multiplying the ith row of A by d_{ii}.
Similarly, post-multiplication of a matrix A by a diagonal matrix D results in a matrix whose columns are those of A, multiplied by the respective diagonal elements of D.
Next, \text{diag}(a_1,\cdots,a_n)\text{diag}(b_1,\cdots,b_n) = \text{diag}(a_1b_1,\cdots,a_nb_n)
can be seen as the pre-multiplication of the matrix \text{diag}(b_1,\cdots,b_n) by the diagonal matrix \text{diag}(a_1,\cdots,a_n).
Finally, if a_i\neq0 for i=1,\cdots,n, then a_i^{-1} exists and hence \text{diag}(a_1,\cdots,a_n)\text{diag}(a_1^{-1},\cdots,a_n^{-1})=\text{diag}(1,\cdots,1)=I_n
which means \text{diag}(a_1,\cdots,a_n) is non-singular and its inverse is \text{diag}(a_1^{-1},\cdots,a_n^{-1}).


3. Let A=\begin{bmatrix}0& 0& 2\\1& 2& 6\\ 3&7&9 \end{bmatrix}. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.

Solution:
\begin{bmatrix}0& 0& 2& 1 & 0 & 0\\ 1& 2&6 & 0 & 1 & 0\\ 3& 7& 9 & 0& 0& 1 \end{bmatrix}
\Rightarrow R_1\leftrightarrow R_2 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 0& 2& 1 & 0 & 0\\3& 7& 9 & 0& 0& 1 \end{bmatrix}
\Rightarrow R_3-3R_1 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 0& 2& 1 & 0 & 0\\0& 1&- 9 & 0& -3& 1 \end{bmatrix}
\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 1&- 9 & 0& -3& 1\\0& 0& 2& 1 & 0 & 0 \end{bmatrix}
\Rightarrow {1\over2}R_3 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 1&- 9 & 0& -3& 1\\0& 0& 1& {1\over2} & 0 & 0 \end{bmatrix}
\Rightarrow \begin{cases}R_1-2R_2\\ R_2+9R_3 \end{cases} \begin{bmatrix} 1& 0&24 & 0 & 7 & -2\\ 0& 1&0 & {9\over2}& -3& 1\\0& 0& 1& {1\over2} & 0 & 0 \end{bmatrix}
\Rightarrow R_1-24R_3 \begin{bmatrix} 1& 0&0& -12 & 7 & -2\\ 0& 1&0 & {9\over2}& -3& 1\\0& 0& 1& {1\over2} & 0 & 0 \end{bmatrix}
Thus A is non-singular and A^{-1}= \begin{bmatrix} -12 & 7 & -2\\ {9\over2}& -3& 1\\{1\over2} & 0 & 0 \end{bmatrix}.
Next, since we have I_3=E_{13}(-24)E_{23}(9)E_{12}(-2)E_{3}({1\over2})E_{23}E_{31}(-3)E_{12}A
\Rightarrow A^{-1}= E_{13}(-24)E_{23}(9)E_{12}(-2)E_{3}({1\over2})E_{23}E_{31}(-3)E_{12}
Thus A=(A^{-1})^{-1}=(E_{13}(-24)E_{23}(9)E_{12}(-2)E_{3}({1\over2})E_{23}E_{31}(-3)E_{12})^{-1}
=E_{12}E_{31}(3)E_{23}E_{3}(2)E_{12}(2)E_{23}(-9)E_{13}(24)

4. Find the rational number k for which the matrix A=\begin{bmatrix}1& 2& k\\ 3& -1& 1\\ 5& 3& -5 \end{bmatrix} is singular.

Solution:
A=\begin{bmatrix}1& 2& k\\ 3& -1& 1\\ 5& 3& -5 \end{bmatrix}
\Rightarrow \begin{cases}R_2-3R_1\\ R_3-5R_1\end{cases}\begin{bmatrix}1& 2& k\\ 0& -7& 1-3k\\ 0& -7& -5-5k \end{bmatrix}
\Rightarrow R_3-R_2\begin{bmatrix}1& 2& k\\ 0& -7& 1-3k\\ 0& 0& -6-2k \end{bmatrix}
Thus A is singular if -6-2k=0\Rightarrow k=-3.


5. Prove that A=\begin{bmatrix}1& 2\\ -2& -4 \end{bmatrix} is singular and find a non-singular matrix P such that PA has last row zero.

Solution:
A=\begin{bmatrix}1& 2\\ -2& -4 \end{bmatrix}
\Rightarrow R_2+2R_1 \begin{bmatrix}1& 2\\ 0& 0 \end{bmatrix}
That is, A is singular and P=E_{21}(2)=\begin{bmatrix}1& 0\\ 2& 1 \end{bmatrix}.


6. If A=\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix}, verify that A^2-2A+13I_2=0 and deduce that A^{-1}=-{1\over13}(A-2I_2).

Solution:
A=\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix}\Rightarrow A^2=AA=\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix}\cdot\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix} =\begin{bmatrix}-11& 8\\-6& -11 \end{bmatrix}
\Rightarrow A^2-2A+13I_2= \begin{bmatrix}-11& 8\\-6& -11 \end{bmatrix} - \begin{bmatrix}2& 8\\-6& 2 \end{bmatrix} + \begin{bmatrix}13& 0\\0& 13 \end{bmatrix} = 0
Since A^2-2A+13I_2=0, we have A(A-2I_2)=-13I_2=(A-2I_2)A \Rightarrow A^{-1}=-{1\over13}(A-2I_2)

7. Let A = \begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix}.
(1) Verify that A^3=3A^2-3A+I_3.
(2) Express A^4 in terms of A^2, A and I_3 and hence calculate A^4 explicitly.
(3) Use (1) to prove that A is non-singular and find A^{-1} explicitly.

Solution:
(1) A = \begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix} \Rightarrow A^2=AA=\begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix}\cdot\begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix} = \begin{bmatrix}-1& 0& -2\\2& 1& 2\\ 6& 4& 3 \end{bmatrix}
\Rightarrow A^3=A^2A = \begin{bmatrix}-1& 0& -2\\2& 1& 2\\ 6& 4& 3 \end{bmatrix}\cdot \begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix} = \begin{bmatrix}-5& -3& -3\\6& 4& 3\\ 12& 9& 4 \end{bmatrix}
Thus 3A^2-3A+I_3= \begin{bmatrix}-3& 0& -6\\6& 3& 6\\ 18& 12& 9 \end{bmatrix} - \begin{bmatrix}3& 3& -3\\0& 0& 3\\ 6& 3& 6 \end{bmatrix} + \begin{bmatrix}1& 0& 0\\0& 1& 0\\ 0& 0& 1 \end{bmatrix}
=\begin{bmatrix}-5& -3& -3\\6& 4& 3\\ 12& 9& 4 \end{bmatrix} = A^3

(2) A^4=A^3A=(3A^2-3A+I_3)A = 3A^3-3A^2+A
= 3(3A^2-3A+I_3) -3A^2 + A = 6A^2-8A+3I_3
=\begin{bmatrix}-6& 0& -12\\12& 6& 12\\ 36& 24& 18 \end{bmatrix} - \begin{bmatrix}8& 8& -8\\0& 0& 8\\ 16& 8& 16 \end{bmatrix} + \begin{bmatrix}3& 0& 0\\0& 3& 0\\ 0& 0& 3 \end{bmatrix}
= \begin{bmatrix}-11& -8& -4\\12& 9& 4\\ 20& 16& 5 \end{bmatrix}

(3) Since A^3=3A^2-3A+I_3, we have A^3-3A^2+3A=I_3
\Rightarrow A(A^2-3A+3I_3) = I_3 = (A^2-3A+3I_3)A
Thus A is non-singular and A^{-1}= A^2-3A+3I_3 = \begin{bmatrix}-1& 0& -2\\2& 1& 2\\ 6& 4& 3 \end{bmatrix} - \begin{bmatrix}3& 3& -3\\0& 0& 3\\ 6& 3& 6 \end{bmatrix} + \begin{bmatrix}3& 0& 0\\0& 3& 0\\ 0& 0& 3 \end{bmatrix}
= \begin{bmatrix}-1& -3& 1\\2& 4& -1\\ 0& 1& 0 \end{bmatrix}

8. (1) Let B be an n\times n matrix such that B^3=0. If A=I_n-B, prove that A is non-singular and A^{-1}=I_n+B+B^2.
Show that the system of linear equations AX=b has the solution X=b+Bb+B^2b.

(2) If B=\begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix}, verify that B^3=0 and use (1) to determine (I_3-B)^{-1} explicitly.

Solution:
(1) Since AA^{-1}=(I_n-B)(I_n+B+B^2) = (I_n+B+B^2)-(B+B^2+B^3) = I_n
A^{-1}A=(I_n+B+B^2)(I_n-B)=(I_n-B)+(B-B^2)+(B^2-B^3) = I_n
Hence A is non-singular and A^{-1}=I_n+B+B^2. And thus AX=b\Rightarrow A^{-1}AX=A^{-1}b\Rightarrow X= (I_n+B+B^2) b= b+Bb+B^2b

(2) B= \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix}
\Rightarrow B^2=BB= \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} \cdot \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} = \begin{bmatrix}0& 0& rt\\0& 0& 0\\0& 0& 0 \end{bmatrix}
\Rightarrow B^3=B^2B= \begin{bmatrix}0& 0& rt\\0& 0& 0\\0& 0& 0 \end{bmatrix}\cdot \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} = 0
By the above result, we have (I_3-B)^{-1} = I_3+B+B^2
= \begin{bmatrix}1& 0& 0\\0& 1& 0\\ 0& 0& 1 \end{bmatrix} + \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} + \begin{bmatrix}0& 0& rt\\0& 0& 0\\0& 0& 0 \end{bmatrix}
=\begin{bmatrix}1& r& s+rt\\0& 1& t\\0& 0& 1 \end{bmatrix}

9. Let A be n\times n.
(1) If A^2=0, prove that A is singular.
(2) If A^2 = A and A \neq I_n, prove that A is singular.

Solution:
(1) Suppose A is non-singular, then A^{-1}A^2=A^{-1}0\Rightarrow A^{-1}AA=0 \Rightarrow A=0
whcih is contradiction since zero matrix is singular.
(2) Suppose A is non-singular, then A^{-1}A^2 = A^{-1}A\Rightarrow A^{-1}AA=I_n \Rightarrow A=I_n
which means if A^2 = A and A \neq I_n, then A is singular.


10. Use Question 7 to solve the system of equations \begin{cases}x+y-z=a\\ z=b\\2x+y+2z=c \end{cases}
where a, b, c are given rationals. Check your answer using the Gauss-Jordan algorithm.

Solution:
Rewrite the system as AX=B: \begin{bmatrix}1& 1& -1\\ 0& 0& 1\\ 2& 1& 2 \end{bmatrix}\cdot \begin{bmatrix}x\\y\\z \end{bmatrix} = \begin{bmatrix}a\\b\\c \end{bmatrix}
where A= \begin{bmatrix}1& 1& -1\\ 0& 0& 1\\ 2& 1& 2 \end{bmatrix} satisfies A^3=3A^2-3A+I_3, and hence A^{-1}=A^2-3A+3I_3 according to Question 7. Thus X=A^{-1}B = (A^2-3A+3I_3)B
=\begin{bmatrix}-1& -3& 1\\2& 4& -1\\ 0& 1& 0 \end{bmatrix}\cdot \begin{bmatrix}a\\b\\c \end{bmatrix}=\begin{bmatrix}-a-3b+c\\2a+4b-c\\b \end{bmatrix}
That is, the solution is \begin{cases}x=a-3b+c\\y=2a+4b-c\\z=b\end{cases}

11. Determine explicitly the following products of 3\times3 elementary row matrices.
(1) E_{12}E_{23}; (2) E_{1}(5)E_{12}; (3) E_{12}(3)E_{21}(-3); (4) (E_{1}(100))^{-1}; (5) E_{12}^{-1}; (6) (E_{12}(7))^{-1}; (7) (E_{12}(7)E_{31}(1))^{-1}

Solution:
(1) E_{12}E_{23} = E_{12}\begin{bmatrix}1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} = \begin{bmatrix}0& 0& 1\\ 1& 0& 0\\ 0& 1& 0 \end{bmatrix}

(2) E_{1}(5)E_{12}= E_{1}(5) \begin{bmatrix}0& 1& 0\\ 1& 0& 0\\ 0& 0& 1 \end{bmatrix} = \begin{bmatrix}0& 5& 0\\ 1& 0& 0\\ 0& 0& 1 \end{bmatrix}

(3) E_{12}(3)E_{21}(-3) = E_{12}(3) \begin{bmatrix}1& 0& 0\\ -3& 1& 0\\ 0& 0& 1 \end{bmatrix} = \begin{bmatrix}-8& 3& 0\\ -3& 1& 0\\ 0& 0& 1 \end{bmatrix}

(4) (E_{1}(100))^{-1} =E_{1}({1\over100})= \begin{bmatrix}{1\over100}& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}

(5) E_{12}^{-1} = E_{12} = \begin{bmatrix}0& 1& 0\\ 1& 0& 0\\ 0& 0& 1 \end{bmatrix}

(6) (E_{12}(7))^{-1} = E_{12}(-7) = \begin{bmatrix}1& -7& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}

(7) (E_{12}(7)E_{31}(1))^{-1} = E_{31}(-1)E_{12}(-7) = E_{31}(-1) \begin{bmatrix}1& -7& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} = \begin{bmatrix}1& -7& 0\\ 0& 1& 0\\ -1& 7& 1 \end{bmatrix}

12. Let A be the following product of 4\times4 elementary row matrices: A=E_{3}(2)E_{14}E_{42}(3).
Find A and A^{-1} explicitly.

Solution:
A = E_{3}(2)E_{14}\begin{bmatrix}1 &0 &0& 0\\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 3& 0& 1 \end{bmatrix} = E_{3}(2) \begin{bmatrix}0& 3& 0& 1\\0& 1& 0& 0\\ 0& 0& 1& 0\\1 &0 &0& 0 \end{bmatrix} =\begin{bmatrix}0& 3& 0& 1\\0& 1& 0& 0\\ 0& 0& 2& 0\\1 &0 &0& 0 \end{bmatrix}
A^{-1}=E_{42}(-3)E_{14}E_{3}({1\over2}) =E_{42}(-3)E_{14}\begin{bmatrix}1 &0 &0& 0\\ 0& 1& 0& 0\\ 0& 0& {1\over2}& 0\\ 0& 0& 0& 1 \end{bmatrix}
=E_{42}(-3) \begin{bmatrix}0& 0& 0& 1\\ 0& 1& 0& 0\\ 0& 0& {1\over2}& 0\\1 &0 &0& 0 \end{bmatrix}= \begin{bmatrix}0& 0& 0& 1\\ 0& 1& 0& 0\\ 0& 0& {1\over2}& 0\\1 &-3 &0& 0 \end{bmatrix}

13. Determine which of the following matrices over \mathbb{Z}_2 are non-singular and find the inverse, where possible.
(a) \begin{bmatrix}1& 1& 0& 1\\0& 0& 1& 1\\1& 1& 1& 1\\1& 0& 0& 1 \end{bmatrix}; (b) \begin{bmatrix}1& 1& 0& 1\\0& 1& 1& 1\\1& 0& 1& 0\\1& 1& 0& 1 \end{bmatrix}.

Solution:
In \mathbb{Z}_2 field, 1+1=0 \Rightarrow -1 = 1.
(a) \begin{bmatrix}1& 1& 0& 1 & 1& 0& 0& 0\\0& 0& 1& 1 &0& 1& 0& 0\\1& 1& 1& 1& 0& 0& 1& 0\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow \begin{cases}R_1-R_4\\R_3-R_4 \end{cases}\begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 1& 1 &0& 1& 0& 0\\0& 1& 1& 0& 0& 0& 1& 1\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow R_3-R_1 \begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 1& 1 &0& 1& 0& 0\\0& 0& 1& 0& 1& 0& 1& 0\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow R_2-R_3 \begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 0& 1 &1& 1& 1& 0\\0& 0& 1& 0& 1& 0& 1& 0\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow R_4-R_2 \begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 0& 1 &1& 1& 1& 0\\0& 0& 1& 0& 1& 0& 1& 0\\1& 0& 0& 0& 1& 1& 1& 1 \end{bmatrix}
\Rightarrow \begin{cases}R_1\leftrightarrow R_4\\R_2\leftrightarrow R_4^{'} \end{cases} \begin{bmatrix}1& 0& 0& 0& 1& 1& 1& 1\\0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 1& 0& 1& 0& 1& 0\\0& 0& 0& 1 &1& 1& 1& 0\end{bmatrix}
Thus the original matrix is non-singular and its inverse is \begin{bmatrix}1& 1& 1& 1\\1& 0& 0& 1\\1& 0& 1& 0\\1& 1& 1& 0\end{bmatrix}

(b) \begin{bmatrix}1& 1& 0& 1\\0& 1& 1& 1\\1& 0& 1& 0\\1& 1& 0& 1 \end{bmatrix}\Rightarrow R_1-R_4 \begin{bmatrix}0& 0& 0& 0\\0& 1& 1& 1\\1& 0& 1& 0\\1& 1& 0& 1 \end{bmatrix}
which is singular matrix.


14. Determine which of the following matrices are non-singular and find the inverse, where possible.
(a) \begin{bmatrix}1& 1& 1\\-1& 1& 0\\2& 0& 0 \end{bmatrix}; (b) \begin{bmatrix}2& 2& 4\\1& 0& 1\\0& 1& 0 \end{bmatrix}; (c) \begin{bmatrix}4& 6& -3\\0& 0& 7\\0& 0& 5 \end{bmatrix}; (d) \begin{bmatrix}2& 0& 0\\0& -5& 0\\0& 0& 7 \end{bmatrix}; (e) \begin{bmatrix}1& 2& 4 & 6\\0& 1& 2 & 0\\0 & 0& 1 & 2\\ 0& 0& 0& 2 \end{bmatrix}; (f) \begin{bmatrix}1& 2& 3\\4& 5& 6\\5& 7& 9 \end{bmatrix}.

Solution:
(a) \begin{bmatrix}1& 1& 1& 1& 0& 0\\-1& 1& 0& 0& 1& 0\\2& 0& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow {1\over2}R_3 \begin{bmatrix}1& 1& 1& 1& 0& 0\\-1& 1& 0& 0& 1& 0\\1& 0& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow \begin{cases}R_1-R_3\\R_2+R_3 \end{cases} \begin{bmatrix}0& 1& 1& 1& 0& -{1\over2}\\0& 1& 0& 0& 1& {1\over2}\\1& 0& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow R_1-R_2 \begin{bmatrix}0& 0& 1& 1& -1& -1\\0& 1& 0& 0& 1& {1\over2}\\1& 0& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow R_1\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0& 0& {1\over2} \\0& 1& 0& 0& 1& {1\over2}\\0& 0& 1& 1& -1& -1\end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix} 0& 0& {1\over2} \\0& 1& {1\over2}\\1& -1& -1\end{bmatrix}.

(b) \begin{bmatrix}2& 2& 4& 1& 0& 0\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow R_1-2R_2 \begin{bmatrix}0& 2& 2& 1& -2& 0\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow R_1-2R_3 \begin{bmatrix}0& 0& 2& 1& -2& -2\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow {1\over2}R_1 \begin{bmatrix}0& 0& 1& {1\over2}& -1& -1\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow R_2-R_1 \begin{bmatrix}0& 0& 1& {1\over2}& -1& -1\\1& 0& 0& -{1\over2}& 2& 1\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow \begin{cases}R_1\leftrightarrow R_3\\ R_1^{'}\leftrightarrow R_2\end{cases} \begin{bmatrix}1& 0& 0& -{1\over2}& 2& 1\\0& 1& 0& 0& 0& 1\\0& 0& 1& {1\over2}& -1& -1\end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix}-{1\over2}& 2& 1\\0& 0& 1\\{1\over2}& -1& -1\end{bmatrix}.

(c) \begin{bmatrix}4& 6& -3\\0& 0& 7\\0& 0& 5 \end{bmatrix}\Rightarrow R_2-{7\over5}R_3 \begin{bmatrix}4& 6& -3\\0& 0& 0\\0& 0& 5 \end{bmatrix}
which is singular matrix.
(d) \begin{bmatrix}2& 0& 0& 1& 0& 0\\0& -5& 0& 0& 1& 0\\0& 0& 7& 0& 0& 1 \end{bmatrix}
\Rightarrow\begin{cases}{1\over2}R_1\\-{1\over5}R_2\\{1\over7}R_3\end{cases} \begin{bmatrix}1& 0& 0& {1\over2}& 0& 0\\0& 1& 0& 0& -{1\over5}& 0\\0& 0& 1& 0& 0& {1\over7} \end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix}{1\over2}& 0& 0\\0& -{1\over5}& 0\\0& 0& {1\over7} \end{bmatrix}.

(e) \begin{bmatrix}1& 2& 4 & 6& 1& 0& 0& 0\\0& 1& 2 & 0& 0& 1& 0& 0\\0 & 0& 1 & 2& 0& 0& 1& 0\\ 0& 0& 0& 2& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow\begin{cases}R_1-2R_2\\{1\over2}R_4 \end{cases} \begin{bmatrix}1& 0& 0 & 6& 1& -2& 0& 0\\0& 1& 2 & 0& 0& 1& 0& 0\\0 & 0& 1 & 2& 0& 0& 1& 0\\ 0& 0& 0& 1& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow\begin{cases}R_1-6R_4\\R_2-2R_3 \end{cases} \begin{bmatrix}1& 0& 0 & 0& 1& -2& 0& -3\\0& 1& 0 & -4& 0& 1& -2& 0\\0 & 0& 1 & 2& 0& 0& 1& 0\\ 0& 0& 0& 1& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow\begin{cases}R_2+4R_4\\R_3-2R_4 \end{cases} \begin{bmatrix}1& 0& 0 & 0& 1& -2& 0& -3\\0& 1& 0 & 0& 0& 1& -2& 2\\0 & 0& 1 & 0& 0& 0& 1& -1\\ 0& 0& 0& 1& 0& 0& 0& {1\over2} \end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix}1& -2& 0& -3\\ 0& 1& -2& 2\\ 0& 0& 1& -1\\ 0& 0& 0& {1\over2} \end{bmatrix}.

(f) \begin{bmatrix}1& 2& 3\\4& 5& 6\\5& 7& 9 \end{bmatrix}\Rightarrow R_3-R_1 \begin{bmatrix}1& 2& 3\\4& 5& 6\\4& 5& 6 \end{bmatrix}\Rightarrow R_2-R_3 \begin{bmatrix}1& 2& 3\\0&0& 0\\4& 5& 6 \end{bmatrix}
which is singular matrix.


15. Let A be a non-singular n\times n matrix. Prove that A^{t} is non-singular and that (A^{t})^{-1}=(A^{-1})^{t}.

Solution:
AA^{-1}=I_n=A^{-1}A\Rightarrow (AA^{-1})^{t}= (I_n)^{t}=(A^{-1}A)^{t}
\Rightarrow (A^{-1})^{t}A^{t}=I_n=A^{t}(A^{-1})^{t}
Thus A^{t} is singular and its inverse is (A^{-1})^{t}.


16. Prove that A=\begin{bmatrix}a& b\\c& d \end{bmatrix} has no inverse if ad-bc=0.

Solution:
From Problems 2.4 Question 3 we know that A^2-(a+d)A+(ad-bc)I_2=0, so if ad-bc=0 and suppose that A^{-1} exists, then we have A^2=(a+d)A\Rightarrow A=(a+d)I_2
\Rightarrow \begin{bmatrix}a& b\\c& d \end{bmatrix}=\begin{bmatrix}a+d& 0\\ 0& a+d \end{bmatrix}
\Rightarrow a=b=c=d=0\Rightarrow ad-bc=0
which is contradiction.


17. Prove that the real matrix A=\begin{bmatrix}1& a& b\\-a& 1& c\\-b& -c& 1 \end{bmatrix} is non-singular by proving that A is row-equivalent to I_3.

Solution:
A=\begin{bmatrix}1& a& b\\-a& 1& c\\-b& -c& 1 \end{bmatrix}
\Rightarrow \begin{cases}R_2+aR_1\\ R_3+bR_1 \end{cases} \begin{bmatrix}1& a& b\\0& 1+a^2& c+ab\\0& ab-c& 1+b^2 \end{bmatrix}
\Rightarrow {1\over1+a^2}R_2\begin{bmatrix}1& a& b\\0& 1& {c+ab\over1+a^2}\\0& ab-c& 1+b^2 \end{bmatrix}
\Rightarrow R_3-(ab-c)R_2\begin{bmatrix}1& a& b\\0& 1& {c+ab\over1+a^2}\\0& 0& 1+b^2-{(ab-c)(c+ab)\over1+a^2} \end{bmatrix}
Since 1+b^2-{(ab-c)(c+ab)\over1+a^2} = 1+b^2+{(c+ab)(c-ab)\over1+a^2}
={1+a^2+b^2+a^2b^2+c^2-a^2b^2\over1+a^2} = {1+a^2+b^2+c^2\over1+a^2}\neq0
Thus A is equivalent to I_3 and it is non-singular.


18. If P^{-1}AP=B, prove that P^{-1}A^{n}P=B^{n} for n\geq1.

Solution:
Use mathematical induction. Suppose that P^{-1}A^{n}P=B^{n}, then B^{n+1}= (P^{-1}AP)^{n+1}= (P^{-1}AP)^{n}(P^{-1}AP)
=P^{-1}A^{n}PP^{-1}AP = P^{-1}A^{n}AP=P^{-1}A^{n+1}P

19. Let A=\begin{bmatrix}{2\over3}&{1\over4}\\ {1\over3}&{3\over4} \end{bmatrix}, P=\begin{bmatrix}1& 3\\-1& 4 \end{bmatrix}. Verify that P^{-1}AP=\begin{bmatrix}{5\over12}&0\\ 0&1 \end{bmatrix} and deduce that A^{n}={1\over7}\begin{bmatrix}3 &3\\4& 4 \end{bmatrix} + {1\over7}\left({5\over12}\right) ^{n}\begin{bmatrix}4 &-3\\-4& 3 \end{bmatrix}.

Solution:
\begin{bmatrix}1& 3 &1& 0\\-1& 4& 0& 1\end{bmatrix}
\Rightarrow R_2+R_1 \begin{bmatrix}1& 3 &1& 0\\0& 7& 1& 1\end{bmatrix}
\Rightarrow {1\over7}R_2 \begin{bmatrix}1& 3 &1& 0\\0& 1& {1\over7}& {1\over7}\end{bmatrix}
\Rightarrow R_1-3R_2 \begin{bmatrix}1& 0 &{4\over7}& -{3\over7}\\0& 1& {1\over7}& {1\over7}\end{bmatrix}
Thus P^{-1}={1\over7}\begin{bmatrix}4& -3\\1& 1 \end{bmatrix}, and P^{-1}AP= {1\over7}\begin{bmatrix}4& -3\\1& 1 \end{bmatrix}\cdot \begin{bmatrix}{2\over3}&{1\over4}\\ {1\over3}&{3\over4} \end{bmatrix} \cdot \begin{bmatrix}1& 3\\-1& 4 \end{bmatrix} = {1\over7}\begin{bmatrix}{5\over3}& -{5\over4}\\ 1&1 \end{bmatrix} \cdot \begin{bmatrix}1& 3\\-1& 4 \end{bmatrix}
={1\over7} \begin{bmatrix}{35\over12}& 0\\0& 7\end{bmatrix} = \begin{bmatrix} {5\over12}&0\\ 0&1 \end{bmatrix}=B
From the previous question, we know that P^{-1}A^{n}P=B^{n}= \begin{bmatrix} \left({5\over12}\right)^{n}&0\\ 0&1^n \end{bmatrix}. Hence A^n=PB^{n}P^{-1}= \begin{bmatrix}1& 3\\-1& 4 \end{bmatrix}\cdot \begin{bmatrix} \left({5\over12}\right)^{n}&0\\ 0&1 \end{bmatrix} \cdot {1\over7}\begin{bmatrix}4& -3\\1& 1 \end{bmatrix}
={1\over7}\begin{bmatrix}\left({5\over12}\right)^{n}&3\\-\left({5\over12}\right)^{n} &4 \end{bmatrix}\cdot \begin{bmatrix}4& -3\\1& 1 \end{bmatrix}
={1\over7} \begin{bmatrix}4\cdot\left({5\over12}\right)^{n}+3& -3\cdot \left({5\over12}\right)^{n}+3 \\-4\cdot\left({5\over12}\right)^{n}+4& 3\cdot \left({5\over12}\right)^{n}+4 \end{bmatrix}
= {1\over7}\begin{bmatrix}3 &3\\4& 4 \end{bmatrix} + {1\over7}\left({5\over12}\right) ^{n}\begin{bmatrix}4 &-3\\-4& 3 \end{bmatrix}

20. Let A=\begin{bmatrix}a& b\\c& d \end{bmatrix} be a Markov matrix; that is a matrix whose elements are non-negative and satisfy a+c=1=b+d. Also let P=\begin{bmatrix}b& 1\\c& -1 \end{bmatrix}. Prove that if A\neq I_2 then
(1) P is non-singular and P^{-1}AP=\begin{bmatrix}1& 0\\ 0& a+d-1 \end{bmatrix},
(2) A^{n}\to{1\over b+c}\begin{bmatrix}b& b\\ c& c \end{bmatrix} as n\to\infty, if A\neq \begin{bmatrix}0& 1\\ 1& 0 \end{bmatrix}.

Solution:
(1) If P is non-singular then \Delta=-b-c\neq0. Since a+c=1 and all of the elements are non-negative, so -b-c = -(b+c) \leq0. If b+c=0, then b=c=0\Rightarrow a=d=1\Rightarrow A=\begin{bmatrix}1& 0\\0& 1 \end{bmatrix} = I_2. Thus, if A\neq I_2 then P is non-singular and P^{-1}={1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}. Hence P^{-1}AP= {1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix} \cdot \begin{bmatrix}a& b\\c& d \end{bmatrix} \cdot \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-a-c& -b-d\\-ac+bc& -bc+bd \end{bmatrix} \cdot \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-1& -1\\-ac+bc& -bc+bd \end{bmatrix} \cdot \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-b-c& 0\\-abc+b^2c-bc^2+bcd& -ac+bc+bc-bd \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-b-c& 0\\-bc(a-b+c-d)& -ac+b(1-a)+c(1-d)-bd \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-b-c& 0\\0 & (-b-c)(a+d-1) \end{bmatrix}= \begin{bmatrix}1& 0\\ 0& a+d-1 \end{bmatrix}

(2) Since P^{-1}A^{n}P=(P^{-1}AP)^n = \begin{bmatrix}1& 0\\ 0& (a+d-1)^n \end{bmatrix}
Hence A^{n} =P \begin{bmatrix}1& 0\\ 0& (a+d-1)^n \end{bmatrix} P^{-1}
= \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}\cdot \begin{bmatrix}1& 0\\ 0& (a+d-1)^n \end{bmatrix} \cdot {1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}
Since when n\to\infty, a+d-1\to0 for 0 < a+d < 2, otherwise A= \begin{bmatrix}0& 1\\ 1& 0 \end{bmatrix}. Thus A^{n} = \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}\cdot \begin{bmatrix}1& 0\\ 0& 0 \end{bmatrix} \cdot {1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}
={1\over-b-c} \begin{bmatrix}b& 0\\ c& 0 \end{bmatrix} \cdot \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}
= {1\over-b-c} \begin{bmatrix}-b& -b\\-c& -c \end{bmatrix} ={1\over b+c} \begin{bmatrix}b& b\\c& c \end{bmatrix}.
21. If X=\begin{bmatrix}1& 2\\ 3& 4\\ 5& 6 \end{bmatrix} and Y=\begin{bmatrix}-1\\3\\4 \end{bmatrix}, find XX^{t}, X^{t}X, YY^{t}, Y^{t}Y.

Solution:
X^{t}=\begin{bmatrix}1& 3& 5\\2& 4& 6 \end{bmatrix} and Y^{t}=\begin{bmatrix}-1& 3& 4 \end{bmatrix}. Note that A^{t}A MUST be symmetric. XX^{t} = \begin{bmatrix}1& 2\\ 3& 4\\ 5& 6 \end{bmatrix}\cdot \begin{bmatrix}1& 3& 5\\2& 4& 6 \end{bmatrix} = \begin{bmatrix}5& 11& 17\\ 11& 25 & 39\\ 17& 39& 61 \end{bmatrix}
X^{t}X = \begin{bmatrix}1& 3& 5\\2& 4& 6 \end{bmatrix} \cdot \begin{bmatrix}1& 2\\ 3& 4\\ 5& 6 \end{bmatrix} = \begin{bmatrix}35& 44\\44& 56 \end{bmatrix}
YY^{t} = \begin{bmatrix}-1\\3\\4 \end{bmatrix} \cdot \begin{bmatrix}-1& 3& 4 \end{bmatrix} = \begin{bmatrix}1& -3& -4\\ -3& 9 & 12\\ -4& 12& 16 \end{bmatrix}
Y^{t}Y = \begin{bmatrix}-1& 3& 4 \end{bmatrix} \cdot \begin{bmatrix}-1\\3\\4 \end{bmatrix} = 26

22. Prove that the system of linear equations \begin{cases}x+2y=4\\ x+y=5\\3x+5y=12 \end{cases}
is inconsistent and find a least squares solution of the system.

Solution:
The augmented matrix is \begin{bmatrix}1& 2& 4\\1& 1& 5\\3& 5& 12 \end{bmatrix}\Rightarrow \begin{bmatrix}1& 2& 4\\0& -1& 1\\0& -1& 0 \end{bmatrix}\Rightarrow \begin{bmatrix}1& 0& 4\\0& 0& 1\\0& -1& 0 \end{bmatrix}\Rightarrow \begin{bmatrix}1& 0& 0\\0& 1& 0\\0& 0& 1 \end{bmatrix}
The last row indicates that this is inconsistent system.
Since A=\begin{bmatrix}1& 2\\1& 1\\3& 5 \end{bmatrix}, X=\begin{bmatrix}x \\ y \end{bmatrix}, and B=\begin{bmatrix}4\\5\\12 \end{bmatrix}. So the normal equation is A^{t}AX=A^{t}B
\Rightarrow \begin{bmatrix}1& 1& 3\\2& 1& 5 \end{bmatrix}\cdot \begin{bmatrix}1& 2\\1& 1\\3& 5 \end{bmatrix} X= \begin{bmatrix}1& 1& 3\\2& 1& 5 \end{bmatrix} \cdot \begin{bmatrix}4\\5\\12 \end{bmatrix}
\Rightarrow \begin{bmatrix}11& 18\\18& 30 \end{bmatrix}X = \begin{bmatrix}45\\73 \end{bmatrix}
\Rightarrow \begin{cases}x ={\Delta_1\over\Delta}= {\begin{vmatrix}45& 18\\73& 30 \end{vmatrix}\over \begin{vmatrix}11& 18\\18& 30 \end{vmatrix}} =6\\ y ={\Delta_2\over\Delta} = {\begin{vmatrix}11& 45\\18& 73 \end{vmatrix}\over \begin{vmatrix}11& 18\\18& 30 \end{vmatrix}} =-{7\over6} \end{cases}

23. The points (0, 0), (1, 0), (2, -1), (3, 4), (4, 8) are required to lie on a parabola y = a+bx+cx^2. Find a least squares solution for a, b, c. Also prove that no parabola passes through these points.

Solution:
The system is \begin{cases}a=0\\ a+b+c=0\\ a+2b+4c=-1\\ a+3b+9c=4\\ a+4b+16c=8 \end{cases}
That is, A=\begin{bmatrix} 1& 0& 0\\ 1& 1& 1\\ 1& 2& 4\\ 1& 3& 9\\ 1& 4& 16\end{bmatrix}, X=\begin{bmatrix}a\\b\\c \end{bmatrix}, and B=\begin{bmatrix}0\\ 0\\ -1\\ 4\\8 \end{bmatrix}. The normal equation is A^{t}AX=A^{t}B
\Rightarrow \begin{bmatrix}1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 1& 4& 9& 16 \end{bmatrix} \cdot \begin{bmatrix} 1& 0& 0\\ 1& 1& 1\\ 1& 2& 4\\ 1& 3& 9\\ 1& 4& 16\end{bmatrix}X = \begin{bmatrix}1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 1& 4& 9& 16 \end{bmatrix} \cdot \begin{bmatrix}0\\ 0\\ -1\\ 4\\8 \end{bmatrix}
\Rightarrow \begin{bmatrix}5& 10& 30\\ 10& 30& 100\\ 30& 100& 354 \end{bmatrix}X = \begin{bmatrix}11\\ 42\\ 160\end{bmatrix}
The augmented matrix is \begin{bmatrix}5& 10& 30 & 11\\ 10& 30& 100 &42\\ 30& 100& 354 &160\end{bmatrix}
\Rightarrow \begin{bmatrix}1& 2& 6& {11\over5}\\ 1& 3& 10& {21\over5}\\1& {10\over3}& {59\over5}& {16\over3} \end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 6& {11\over5}\\ 0& 1& 4& 2\\0& {4\over3}& {29\over5}& {47\over15} \end{bmatrix}
\Rightarrow \begin{bmatrix}1& 0& -2& -{9\over5}\\ 0& 1& 4& 2\\0& 0& {7\over15}& {7\over15} \end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2& -{9\over5}\\ 0& 1& 4& 2\\0& 0& 1& 1 \end{bmatrix}
\Rightarrow \begin{bmatrix}1& 0& 0& {1\over5}\\ 0& 1& 0& -2\\0& 0& 1& 1 \end{bmatrix}\Rightarrow \begin{cases}a={1\over5} \\b=-2 \\c=1 \end{cases}
Next, for the original system AX=B, its augmented matrix is \begin{bmatrix} 1& 0& 0& 0\\ 1& 1& 1& 0\\ 1& 2& 4& -1\\ 1& 3& 9 &4 \\ 1& 4& 16 &8\end{bmatrix}
\Rightarrow \begin{bmatrix} 1& 0& 0& 0\\ 0& 1& 1& 0\\ 0& 2& 4& -1\\ 0& 3& 9 &4 \\ 0& 4& 16 &8\end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0& 0\\ 0& 1& 1& 0\\ 0& 0& 2& -1\\ 0& 0& 6 &4 \\ 0& 0& 12 & 8 \end{bmatrix}
\Rightarrow \begin{bmatrix} 1& 0& 0& 0\\ 0& 1& 1& 0\\ 0& 0& 2& -1\\ 0& 0& 0 &7 \\ 0& 0& 0 & 0 \end{bmatrix}
The last matrix is inconsistent which means no parabola passes through these points.


24. If A is a symmetric n\times n real matrix and B is n\times m, prove that B^{t}AB is a symmetric m\times m matrix.

Solution:
(B^{t}AB)^{t}= B^{t}A^{t}(B^{t})^{t}=B^{t}A^{t}B = B^{t}AB
Thus, B^{t}AB is a symmetric matrix.


25. If A is m\times n and B is n\times m, prove that AB is singular if m > n.

Solution:
Since m > n, so the homogeneous system BX=0 has a non-trivial solution X_0 (i.e. the number of unknowns is greater than the number of equations). Hence we have A(BX_0) = ABX_0 = (AB)X_0 = 0
which means AB (m\times m squares) is singular (if the homogeneous system AX=0 has a non-trivial solution, then A is singular).


26. Let A and B be n\times n. If A or B is singular, prove that AB is also singular.

Solution:
If B is singular, then we know that the homogeneous system BX = 0 has a non-trivial solution X_0, that is A(BX_0)=(AB)X_0=0
which means that AB is also singular since X_0 is a non-trivial solution.\\
If A is singular, then A^{t} is also singular (see Question 15). So the homogeneous system A^{t}X=0 has a non-trivial solution X_0, and we have B^{t}(A^{t}X_0)=0 \Rightarrow (B^{t}A^{t})X_0=0
\Rightarrow (AB)^{t}X_0=0
which means (AB)^{t} is singular, and thus AB is also singular.



没有评论:

发表评论