The free printable PDF format lecture can be Downloaded Here
Summary
- Non-singular matrix
A matrix A\in M_{n\times n}(F) is called non-singular or invertible if there exists a matrix B\in M_{n\times n}(F) such that AB=I_n=BA.Any matrix B with the above property is called an inverse of A. If A does not have an inverse, A is called singular. - Inverses are unique
If A has inverse B and C, then B=C.
(Since B=BI_n=B(AC)=(BA)C=I_nC=C) - If A and B are non-singular matrices of the same size, then so is AB. Moreover (AB)^{-1}=B^{-1}A^{-1}.
(Since (AB)(B^{-1}A^{-1})=ABB^{-1}A^{-1}=AI_nA^{-1}=I_n)
The above result generalizes to a product of m non-singular matrices: If A_1,\cdots, A_m are non-singular n\times n matrices, then the product A_1\cdots A_n is also non-singular. Moreover (A_1\cdots A_m)^{-1}=A_m^{-1}\cdots A_{1}^{-1}. - Let A=\begin{bmatrix}a& b \\ c&d \end{bmatrix} and \Delta=ad-bc\neq0. Then A is non-singular. Also A^{-1}=\Delta^{-1}\begin{bmatrix}d & -b\\ -c &a \end{bmatrix}
- If the coefficient matrix A of a system of n equations in n unknown is non-singular, then the system AX=B has the unique solution X=A^{-1}B.
- Cramer's rule for 2 equations in 2 unknowns
The system \begin{cases}ax+by=e \\ cx+dy=f \end{cases}has a unique solution if \Delta=\begin{vmatrix}a & b\\ c&d \end{vmatrix} \neq0, namely x={\Delta_1\over\Delta},\ y={\Delta_2\over\Delta}where \Delta_1=\begin{vmatrix}e & b \\ f & d \end{vmatrix},\ \Delta_2=\begin{vmatrix}a & e \\ c & f \end{vmatrix}.Based on the above theorem, we have the following corollary:
The homogeneous system \begin{cases}ax+by=0 \\ cx+dy=0 \end{cases}has only the trivial solution (i.e. zero) if \Delta=\begin{vmatrix}a & b\\ c & d \end{vmatrix}\neq0. - Let A be a square matrix. If A is non-singular, the homogeneous system AX=0 has only the trivial solution. Equivalently, if the homogeneous system AX=0 has a non-trivial solution, then A is singular.
(Since if A is non-singular then it has inverse matrix and hence AX=0\Rightarrow X=A^{-1}0=0) - Elementary row matrices
To each of the three types of elementary row operation, there corresponds an elementary row matrix, denoted by E_{ij},\ E_{i}(t),\ E_{ij}(t):
- E_{ij}, (i\neq j) is obtained from the identity matrix I_n by interchanging rows i and j.
- E_{i}(t) is obtained by multiplying the i-th row of I_n by t.
- E_{ij}(t),\ (i\neq j) is obtained from I_n by adding t times the j-th row of I_n to the i-th row.
- If a matrix A is pre-multiplied by an elementary row matrix, the resulting matrix is the one obtained b performing the corresponding elementary row-operation on A.
- Elementary row-matrices are non-singular. Indeed,
- E_{ij}^{-1}=E_{ij}
- E_{i}^{-1}(t)=E_{i}(t^{-1})
- E_{ij}^{-1}(t)=E_{ij}(-t)
- Let A be non-singular n\times n matrix. Then
- A is row-equivalent to I_n,
- A is a product of elementary row matrices.
- Let A be n\times n and suppose that A is row-equivalent to I_n. Then A is non-singular and A^{-1} can be found by performing the same sequence of elementary row operation on I_n as were used to convert A to I_n.
(Since I_n=E_r\cdots E_1A=BA\Rightarrow A^{-1}=B=(E_r\cdots E_1)I_n, which means A^{-1} is obtained from I_n by performing the same sequence of elementary row operations as were used to convert A to I_n.)
An important corollary is that if A is singular, then A is row-equivalent to a matrix whose last row is zero. - The transpose of a matrix
Let A be an m\times n matrix. Then A^{t}, the transpose of A, is the matrix obtained by interchanging the rows and columns of A. In other words if A=[a_{ij}], then (A^{t})_{ji}=a_{ij}. Consequently A^{t} is n\times m.
- (A^{t})^{t}=A;
- (A\pm B)^{t}=A^{t}\pm B^{t} if A and B are m\times n;
- (sA)^{t}=sA^{t} if s is a scalar;
- (AB)^{t}=B^{t}A^{t} if A is m\times n and B is n\times p;
(Suppose A=[a_{ij}],\ B=[b_{jk}], we have ((AB)^{t})_{ki}=(AB)_{ik}=\displaystyle\sum_{j=1}^{n}a_{ij}b_{jk} = \sum_{j=1}^{n}(B^{t})_{kj}(A^{t})_{ji}=(B^{t}A^{t})_{ki}) - If A is non-singular, then A^{t} is also non-singular and (A^{t})^{-1}(A^{-1})^{t};
- X^{t}X=x_1^2+\cdots+x_n^2 if X=[x_1,\cdots,x_n]^{t} is a column vector.
- Symmetric matrix
A matrix A is symmetric if A^{t}=A. In other words A is square (say n\times n) and a_{ji}=a_{ij} for all 1\leq i \leq n,\ 1 \leq j \leq n. Hence A=\begin{bmatrix}a&b\\b&c \end{bmatrix}is a general 2\times2 symmetric matrix. - Skew-symmetric matrix
A matrix A is called skew-symmetric if A^{t}=-A. In other words A is square (say n\times n) and a_{ji}=-a_{ij} for all 1\leq i \leq n,\ 1 \leq j \leq n (note that a_{ii}=0). Hence A=\begin{bmatrix}0&b\\-b&0 \end{bmatrix}is a general 2\times2 skew-symmetric matrix. - Normal equations
Suppose AX=B represents a system of linear equations with real coefficients. The associated system A^{t}AX=A^{t}B is always consistent and that the any solution of this system minimize the sum r_1^2+\cdots+r_m^2, where r_1,\cdots,r_m (the residuals) are defined by r_i=a_{i1}x_1+\cdots+a_{in}x_n-b_ifor i=1,\cdots, m. The equations represented by A^{t}AX=A^{t}B are called normal equations corresponding to the system AX=B and any solution of the system of normal equations is called a least squares solution of the original system. More details can be found at HERE.
Problems 2.7
1. Let A=\begin{bmatrix}1 & 4\\ -3 &1 \end{bmatrix}. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.
Solution:
\begin{bmatrix}1& 4& 1& 0\\ -3 &1 &0& 1 \end{bmatrix}\Rightarrow R_2+3R_1 \begin{bmatrix}1& 4& 1& 0\\ 0 &13 &3& 1 \end{bmatrix}
\Rightarrow {1\over13}R_2 \begin{bmatrix}1& 4& 1& 0\\ 0 &1 &{3\over13}& {1\over13} \end{bmatrix} \Rightarrow R_1-4R_2 \begin{bmatrix}1& 0& {1\over13}& -{4\over13}\\ 0 &1 &{3\over13}& {1\over13} \end{bmatrix}
Thus A is non-singular and A^{-1}= \begin{bmatrix}{1\over13}& -{4\over13}\\ {3\over13}& {1\over13} \end{bmatrix}.
Next, we have I_2=E_{12}(-4)E_{2}({1\over13})E_{21}(3)A
\Rightarrow A^{-1}=E_{12}(-4)E_{2}({1\over13})E_{21}(3)
\Rightarrow A=(A^{-1})^{-1}=(E_{12}(-4)E_{2}({1\over13})E_{21}(3))^{-1}
=E_{21}(3)^{-1}E_{2}({1\over13})^{-1}E_{12}(-4)^{-1} = E_{21}(-3)E_{2}(13)E_{12}(4)
2. A square matrix D=[d_{ij}] is called diagonal if d_{ij}=0 for i\neq j. (That is the off-diagonal elements are zero.) Prove that pre-multiplication of a matrix A by a diagonal matrix D results in matrix DA whose rows are the rows of A multiplied by the respective diagonal elements of D. State and prove a similar result for post-multiplication by a diagonal matrix.
Let \text{diag}(a_1,\cdots,a_n) denote the diagonal matrix whose diagonal elements d_{ii} are a_1, \cdots, a_n, respectively. Show that \text{diag}(a_1,\cdots,a_n)\text{diag}(b_1,\cdots,b_n)=\text{diag}(a_1b_1,\cdots,a_nb_n)
and deduce that if a_1\cdots a_n\neq0, then \text{diag}(a_1,\cdots,a_n) is non-singular and (\text{diag}(a_1,\cdots,a_n))^{-1}=\text{diag}(a_1^{-1},\cdots,a_n^{-1}).
Also prove that \text{diag}(a_1,\cdots,a_n) is singular if a_i=0 for some i.
Solution:
Let D=[d_{ij}] be an m\times m diagonal matrix and let A=[a_{jk}] be an m\times n matrix. Thus (DA)_{ik}=\sum_{j=1}^{m}d_{ij}a_{jk} = d_{ii}a_{ik}
for i=1,\cdots,m as d_{ij}=0 while i\neq j. It follows that the i-th row of DA is obtained by multiplying the ith row of A by d_{ii}.
Similarly, post-multiplication of a matrix A by a diagonal matrix D results in a matrix whose columns are those of A, multiplied by the respective diagonal elements of D.
Next, \text{diag}(a_1,\cdots,a_n)\text{diag}(b_1,\cdots,b_n) = \text{diag}(a_1b_1,\cdots,a_nb_n)
can be seen as the pre-multiplication of the matrix \text{diag}(b_1,\cdots,b_n) by the diagonal matrix \text{diag}(a_1,\cdots,a_n).
Finally, if a_i\neq0 for i=1,\cdots,n, then a_i^{-1} exists and hence \text{diag}(a_1,\cdots,a_n)\text{diag}(a_1^{-1},\cdots,a_n^{-1})=\text{diag}(1,\cdots,1)=I_n
which means \text{diag}(a_1,\cdots,a_n) is non-singular and its inverse is \text{diag}(a_1^{-1},\cdots,a_n^{-1}).
3. Let A=\begin{bmatrix}0& 0& 2\\1& 2& 6\\ 3&7&9 \end{bmatrix}. Prove that A is non-singular, find A^{-1} and express A as a product of elementary row matrices.
Solution:
\begin{bmatrix}0& 0& 2& 1 & 0 & 0\\ 1& 2&6 & 0 & 1 & 0\\ 3& 7& 9 & 0& 0& 1 \end{bmatrix}
\Rightarrow R_1\leftrightarrow R_2 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 0& 2& 1 & 0 & 0\\3& 7& 9 & 0& 0& 1 \end{bmatrix}
\Rightarrow R_3-3R_1 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 0& 2& 1 & 0 & 0\\0& 1&- 9 & 0& -3& 1 \end{bmatrix}
\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 1&- 9 & 0& -3& 1\\0& 0& 2& 1 & 0 & 0 \end{bmatrix}
\Rightarrow {1\over2}R_3 \begin{bmatrix} 1& 2&6 & 0 & 1 & 0\\ 0& 1&- 9 & 0& -3& 1\\0& 0& 1& {1\over2} & 0 & 0 \end{bmatrix}
\Rightarrow \begin{cases}R_1-2R_2\\ R_2+9R_3 \end{cases} \begin{bmatrix} 1& 0&24 & 0 & 7 & -2\\ 0& 1&0 & {9\over2}& -3& 1\\0& 0& 1& {1\over2} & 0 & 0 \end{bmatrix}
\Rightarrow R_1-24R_3 \begin{bmatrix} 1& 0&0& -12 & 7 & -2\\ 0& 1&0 & {9\over2}& -3& 1\\0& 0& 1& {1\over2} & 0 & 0 \end{bmatrix}
Thus A is non-singular and A^{-1}= \begin{bmatrix} -12 & 7 & -2\\ {9\over2}& -3& 1\\{1\over2} & 0 & 0 \end{bmatrix}.
Next, since we have I_3=E_{13}(-24)E_{23}(9)E_{12}(-2)E_{3}({1\over2})E_{23}E_{31}(-3)E_{12}A
\Rightarrow A^{-1}= E_{13}(-24)E_{23}(9)E_{12}(-2)E_{3}({1\over2})E_{23}E_{31}(-3)E_{12}
Thus A=(A^{-1})^{-1}=(E_{13}(-24)E_{23}(9)E_{12}(-2)E_{3}({1\over2})E_{23}E_{31}(-3)E_{12})^{-1}
=E_{12}E_{31}(3)E_{23}E_{3}(2)E_{12}(2)E_{23}(-9)E_{13}(24)
4. Find the rational number k for which the matrix A=\begin{bmatrix}1& 2& k\\ 3& -1& 1\\ 5& 3& -5 \end{bmatrix} is singular.
Solution:
A=\begin{bmatrix}1& 2& k\\ 3& -1& 1\\ 5& 3& -5 \end{bmatrix}
\Rightarrow \begin{cases}R_2-3R_1\\ R_3-5R_1\end{cases}\begin{bmatrix}1& 2& k\\ 0& -7& 1-3k\\ 0& -7& -5-5k \end{bmatrix}
\Rightarrow R_3-R_2\begin{bmatrix}1& 2& k\\ 0& -7& 1-3k\\ 0& 0& -6-2k \end{bmatrix}
Thus A is singular if -6-2k=0\Rightarrow k=-3.
5. Prove that A=\begin{bmatrix}1& 2\\ -2& -4 \end{bmatrix} is singular and find a non-singular matrix P such that PA has last row zero.
Solution:
A=\begin{bmatrix}1& 2\\ -2& -4 \end{bmatrix}
\Rightarrow R_2+2R_1 \begin{bmatrix}1& 2\\ 0& 0 \end{bmatrix}
That is, A is singular and P=E_{21}(2)=\begin{bmatrix}1& 0\\ 2& 1 \end{bmatrix}.
6. If A=\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix}, verify that A^2-2A+13I_2=0 and deduce that A^{-1}=-{1\over13}(A-2I_2).
Solution:
A=\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix}\Rightarrow A^2=AA=\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix}\cdot\begin{bmatrix}1& 4\\-3& 1 \end{bmatrix} =\begin{bmatrix}-11& 8\\-6& -11 \end{bmatrix}
\Rightarrow A^2-2A+13I_2= \begin{bmatrix}-11& 8\\-6& -11 \end{bmatrix} - \begin{bmatrix}2& 8\\-6& 2 \end{bmatrix} + \begin{bmatrix}13& 0\\0& 13 \end{bmatrix} = 0
Since A^2-2A+13I_2=0, we have A(A-2I_2)=-13I_2=(A-2I_2)A \Rightarrow A^{-1}=-{1\over13}(A-2I_2)
7. Let A = \begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix}.
(1) Verify that A^3=3A^2-3A+I_3.
(2) Express A^4 in terms of A^2, A and I_3 and hence calculate A^4 explicitly.
(3) Use (1) to prove that A is non-singular and find A^{-1} explicitly.
Solution:
(1) A = \begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix} \Rightarrow A^2=AA=\begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix}\cdot\begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix} = \begin{bmatrix}-1& 0& -2\\2& 1& 2\\ 6& 4& 3 \end{bmatrix}
\Rightarrow A^3=A^2A = \begin{bmatrix}-1& 0& -2\\2& 1& 2\\ 6& 4& 3 \end{bmatrix}\cdot \begin{bmatrix}1& 1& -1\\0& 0& 1\\ 2& 1& 2 \end{bmatrix} = \begin{bmatrix}-5& -3& -3\\6& 4& 3\\ 12& 9& 4 \end{bmatrix}
Thus 3A^2-3A+I_3= \begin{bmatrix}-3& 0& -6\\6& 3& 6\\ 18& 12& 9 \end{bmatrix} - \begin{bmatrix}3& 3& -3\\0& 0& 3\\ 6& 3& 6 \end{bmatrix} + \begin{bmatrix}1& 0& 0\\0& 1& 0\\ 0& 0& 1 \end{bmatrix}
=\begin{bmatrix}-5& -3& -3\\6& 4& 3\\ 12& 9& 4 \end{bmatrix} = A^3
(2) A^4=A^3A=(3A^2-3A+I_3)A = 3A^3-3A^2+A
= 3(3A^2-3A+I_3) -3A^2 + A = 6A^2-8A+3I_3
=\begin{bmatrix}-6& 0& -12\\12& 6& 12\\ 36& 24& 18 \end{bmatrix} - \begin{bmatrix}8& 8& -8\\0& 0& 8\\ 16& 8& 16 \end{bmatrix} + \begin{bmatrix}3& 0& 0\\0& 3& 0\\ 0& 0& 3 \end{bmatrix}
= \begin{bmatrix}-11& -8& -4\\12& 9& 4\\ 20& 16& 5 \end{bmatrix}
(3) Since A^3=3A^2-3A+I_3, we have A^3-3A^2+3A=I_3
\Rightarrow A(A^2-3A+3I_3) = I_3 = (A^2-3A+3I_3)A
Thus A is non-singular and A^{-1}= A^2-3A+3I_3 = \begin{bmatrix}-1& 0& -2\\2& 1& 2\\ 6& 4& 3 \end{bmatrix} - \begin{bmatrix}3& 3& -3\\0& 0& 3\\ 6& 3& 6 \end{bmatrix} + \begin{bmatrix}3& 0& 0\\0& 3& 0\\ 0& 0& 3 \end{bmatrix}
= \begin{bmatrix}-1& -3& 1\\2& 4& -1\\ 0& 1& 0 \end{bmatrix}
8. (1) Let B be an n\times n matrix such that B^3=0. If A=I_n-B, prove that A is non-singular and A^{-1}=I_n+B+B^2.
Show that the system of linear equations AX=b has the solution X=b+Bb+B^2b.
(2) If B=\begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix}, verify that B^3=0 and use (1) to determine (I_3-B)^{-1} explicitly.
Solution:
(1) Since AA^{-1}=(I_n-B)(I_n+B+B^2) = (I_n+B+B^2)-(B+B^2+B^3) = I_n
A^{-1}A=(I_n+B+B^2)(I_n-B)=(I_n-B)+(B-B^2)+(B^2-B^3) = I_n
Hence A is non-singular and A^{-1}=I_n+B+B^2. And thus AX=b\Rightarrow A^{-1}AX=A^{-1}b\Rightarrow X= (I_n+B+B^2) b= b+Bb+B^2b
(2) B= \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix}
\Rightarrow B^2=BB= \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} \cdot \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} = \begin{bmatrix}0& 0& rt\\0& 0& 0\\0& 0& 0 \end{bmatrix}
\Rightarrow B^3=B^2B= \begin{bmatrix}0& 0& rt\\0& 0& 0\\0& 0& 0 \end{bmatrix}\cdot \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} = 0
By the above result, we have (I_3-B)^{-1} = I_3+B+B^2
= \begin{bmatrix}1& 0& 0\\0& 1& 0\\ 0& 0& 1 \end{bmatrix} + \begin{bmatrix}0& r& s\\0& 0& t\\0& 0& 0 \end{bmatrix} + \begin{bmatrix}0& 0& rt\\0& 0& 0\\0& 0& 0 \end{bmatrix}
=\begin{bmatrix}1& r& s+rt\\0& 1& t\\0& 0& 1 \end{bmatrix}
9. Let A be n\times n.
(1) If A^2=0, prove that A is singular.
(2) If A^2 = A and A \neq I_n, prove that A is singular.
Solution:
(1) Suppose A is non-singular, then A^{-1}A^2=A^{-1}0\Rightarrow A^{-1}AA=0 \Rightarrow A=0
whcih is contradiction since zero matrix is singular.
(2) Suppose A is non-singular, then A^{-1}A^2 = A^{-1}A\Rightarrow A^{-1}AA=I_n \Rightarrow A=I_n
which means if A^2 = A and A \neq I_n, then A is singular.
10. Use Question 7 to solve the system of equations \begin{cases}x+y-z=a\\ z=b\\2x+y+2z=c \end{cases}
where a, b, c are given rationals. Check your answer using the Gauss-Jordan algorithm.
Solution:
Rewrite the system as AX=B: \begin{bmatrix}1& 1& -1\\ 0& 0& 1\\ 2& 1& 2 \end{bmatrix}\cdot \begin{bmatrix}x\\y\\z \end{bmatrix} = \begin{bmatrix}a\\b\\c \end{bmatrix}
where A= \begin{bmatrix}1& 1& -1\\ 0& 0& 1\\ 2& 1& 2 \end{bmatrix} satisfies A^3=3A^2-3A+I_3, and hence A^{-1}=A^2-3A+3I_3 according to Question 7. Thus X=A^{-1}B = (A^2-3A+3I_3)B
=\begin{bmatrix}-1& -3& 1\\2& 4& -1\\ 0& 1& 0 \end{bmatrix}\cdot \begin{bmatrix}a\\b\\c \end{bmatrix}=\begin{bmatrix}-a-3b+c\\2a+4b-c\\b \end{bmatrix}
That is, the solution is \begin{cases}x=a-3b+c\\y=2a+4b-c\\z=b\end{cases}
11. Determine explicitly the following products of 3\times3 elementary row matrices.
(1) E_{12}E_{23}; (2) E_{1}(5)E_{12}; (3) E_{12}(3)E_{21}(-3); (4) (E_{1}(100))^{-1}; (5) E_{12}^{-1}; (6) (E_{12}(7))^{-1}; (7) (E_{12}(7)E_{31}(1))^{-1}
Solution:
(1) E_{12}E_{23} = E_{12}\begin{bmatrix}1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} = \begin{bmatrix}0& 0& 1\\ 1& 0& 0\\ 0& 1& 0 \end{bmatrix}
(2) E_{1}(5)E_{12}= E_{1}(5) \begin{bmatrix}0& 1& 0\\ 1& 0& 0\\ 0& 0& 1 \end{bmatrix} = \begin{bmatrix}0& 5& 0\\ 1& 0& 0\\ 0& 0& 1 \end{bmatrix}
(3) E_{12}(3)E_{21}(-3) = E_{12}(3) \begin{bmatrix}1& 0& 0\\ -3& 1& 0\\ 0& 0& 1 \end{bmatrix} = \begin{bmatrix}-8& 3& 0\\ -3& 1& 0\\ 0& 0& 1 \end{bmatrix}
(4) (E_{1}(100))^{-1} =E_{1}({1\over100})= \begin{bmatrix}{1\over100}& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}
(5) E_{12}^{-1} = E_{12} = \begin{bmatrix}0& 1& 0\\ 1& 0& 0\\ 0& 0& 1 \end{bmatrix}
(6) (E_{12}(7))^{-1} = E_{12}(-7) = \begin{bmatrix}1& -7& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}
(7) (E_{12}(7)E_{31}(1))^{-1} = E_{31}(-1)E_{12}(-7) = E_{31}(-1) \begin{bmatrix}1& -7& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} = \begin{bmatrix}1& -7& 0\\ 0& 1& 0\\ -1& 7& 1 \end{bmatrix}
12. Let A be the following product of 4\times4 elementary row matrices: A=E_{3}(2)E_{14}E_{42}(3).
Find A and A^{-1} explicitly.
Solution:
A = E_{3}(2)E_{14}\begin{bmatrix}1 &0 &0& 0\\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 3& 0& 1 \end{bmatrix} = E_{3}(2) \begin{bmatrix}0& 3& 0& 1\\0& 1& 0& 0\\ 0& 0& 1& 0\\1 &0 &0& 0 \end{bmatrix} =\begin{bmatrix}0& 3& 0& 1\\0& 1& 0& 0\\ 0& 0& 2& 0\\1 &0 &0& 0 \end{bmatrix}
A^{-1}=E_{42}(-3)E_{14}E_{3}({1\over2}) =E_{42}(-3)E_{14}\begin{bmatrix}1 &0 &0& 0\\ 0& 1& 0& 0\\ 0& 0& {1\over2}& 0\\ 0& 0& 0& 1 \end{bmatrix}
=E_{42}(-3) \begin{bmatrix}0& 0& 0& 1\\ 0& 1& 0& 0\\ 0& 0& {1\over2}& 0\\1 &0 &0& 0 \end{bmatrix}= \begin{bmatrix}0& 0& 0& 1\\ 0& 1& 0& 0\\ 0& 0& {1\over2}& 0\\1 &-3 &0& 0 \end{bmatrix}
13. Determine which of the following matrices over \mathbb{Z}_2 are non-singular and find the inverse, where possible.
(a) \begin{bmatrix}1& 1& 0& 1\\0& 0& 1& 1\\1& 1& 1& 1\\1& 0& 0& 1 \end{bmatrix}; (b) \begin{bmatrix}1& 1& 0& 1\\0& 1& 1& 1\\1& 0& 1& 0\\1& 1& 0& 1 \end{bmatrix}.
Solution:
In \mathbb{Z}_2 field, 1+1=0 \Rightarrow -1 = 1.
(a) \begin{bmatrix}1& 1& 0& 1 & 1& 0& 0& 0\\0& 0& 1& 1 &0& 1& 0& 0\\1& 1& 1& 1& 0& 0& 1& 0\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow \begin{cases}R_1-R_4\\R_3-R_4 \end{cases}\begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 1& 1 &0& 1& 0& 0\\0& 1& 1& 0& 0& 0& 1& 1\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow R_3-R_1 \begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 1& 1 &0& 1& 0& 0\\0& 0& 1& 0& 1& 0& 1& 0\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow R_2-R_3 \begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 0& 1 &1& 1& 1& 0\\0& 0& 1& 0& 1& 0& 1& 0\\1& 0& 0& 1& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow R_4-R_2 \begin{bmatrix}0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 0& 1 &1& 1& 1& 0\\0& 0& 1& 0& 1& 0& 1& 0\\1& 0& 0& 0& 1& 1& 1& 1 \end{bmatrix}
\Rightarrow \begin{cases}R_1\leftrightarrow R_4\\R_2\leftrightarrow R_4^{'} \end{cases} \begin{bmatrix}1& 0& 0& 0& 1& 1& 1& 1\\0& 1& 0& 0 & 1& 0& 0& 1\\0& 0& 1& 0& 1& 0& 1& 0\\0& 0& 0& 1 &1& 1& 1& 0\end{bmatrix}
Thus the original matrix is non-singular and its inverse is \begin{bmatrix}1& 1& 1& 1\\1& 0& 0& 1\\1& 0& 1& 0\\1& 1& 1& 0\end{bmatrix}
(b) \begin{bmatrix}1& 1& 0& 1\\0& 1& 1& 1\\1& 0& 1& 0\\1& 1& 0& 1 \end{bmatrix}\Rightarrow R_1-R_4 \begin{bmatrix}0& 0& 0& 0\\0& 1& 1& 1\\1& 0& 1& 0\\1& 1& 0& 1 \end{bmatrix}
which is singular matrix.
14. Determine which of the following matrices are non-singular and find the inverse, where possible.
(a) \begin{bmatrix}1& 1& 1\\-1& 1& 0\\2& 0& 0 \end{bmatrix}; (b) \begin{bmatrix}2& 2& 4\\1& 0& 1\\0& 1& 0 \end{bmatrix}; (c) \begin{bmatrix}4& 6& -3\\0& 0& 7\\0& 0& 5 \end{bmatrix}; (d) \begin{bmatrix}2& 0& 0\\0& -5& 0\\0& 0& 7 \end{bmatrix}; (e) \begin{bmatrix}1& 2& 4 & 6\\0& 1& 2 & 0\\0 & 0& 1 & 2\\ 0& 0& 0& 2 \end{bmatrix}; (f) \begin{bmatrix}1& 2& 3\\4& 5& 6\\5& 7& 9 \end{bmatrix}.
Solution:
(a) \begin{bmatrix}1& 1& 1& 1& 0& 0\\-1& 1& 0& 0& 1& 0\\2& 0& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow {1\over2}R_3 \begin{bmatrix}1& 1& 1& 1& 0& 0\\-1& 1& 0& 0& 1& 0\\1& 0& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow \begin{cases}R_1-R_3\\R_2+R_3 \end{cases} \begin{bmatrix}0& 1& 1& 1& 0& -{1\over2}\\0& 1& 0& 0& 1& {1\over2}\\1& 0& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow R_1-R_2 \begin{bmatrix}0& 0& 1& 1& -1& -1\\0& 1& 0& 0& 1& {1\over2}\\1& 0& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow R_1\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0& 0& {1\over2} \\0& 1& 0& 0& 1& {1\over2}\\0& 0& 1& 1& -1& -1\end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix} 0& 0& {1\over2} \\0& 1& {1\over2}\\1& -1& -1\end{bmatrix}.
(b) \begin{bmatrix}2& 2& 4& 1& 0& 0\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow R_1-2R_2 \begin{bmatrix}0& 2& 2& 1& -2& 0\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow R_1-2R_3 \begin{bmatrix}0& 0& 2& 1& -2& -2\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow {1\over2}R_1 \begin{bmatrix}0& 0& 1& {1\over2}& -1& -1\\1& 0& 1& 0& 1& 0\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow R_2-R_1 \begin{bmatrix}0& 0& 1& {1\over2}& -1& -1\\1& 0& 0& -{1\over2}& 2& 1\\0& 1& 0& 0& 0& 1\end{bmatrix}
\Rightarrow \begin{cases}R_1\leftrightarrow R_3\\ R_1^{'}\leftrightarrow R_2\end{cases} \begin{bmatrix}1& 0& 0& -{1\over2}& 2& 1\\0& 1& 0& 0& 0& 1\\0& 0& 1& {1\over2}& -1& -1\end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix}-{1\over2}& 2& 1\\0& 0& 1\\{1\over2}& -1& -1\end{bmatrix}.
(c) \begin{bmatrix}4& 6& -3\\0& 0& 7\\0& 0& 5 \end{bmatrix}\Rightarrow R_2-{7\over5}R_3 \begin{bmatrix}4& 6& -3\\0& 0& 0\\0& 0& 5 \end{bmatrix}
which is singular matrix.
(d) \begin{bmatrix}2& 0& 0& 1& 0& 0\\0& -5& 0& 0& 1& 0\\0& 0& 7& 0& 0& 1 \end{bmatrix}
\Rightarrow\begin{cases}{1\over2}R_1\\-{1\over5}R_2\\{1\over7}R_3\end{cases} \begin{bmatrix}1& 0& 0& {1\over2}& 0& 0\\0& 1& 0& 0& -{1\over5}& 0\\0& 0& 1& 0& 0& {1\over7} \end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix}{1\over2}& 0& 0\\0& -{1\over5}& 0\\0& 0& {1\over7} \end{bmatrix}.
(e) \begin{bmatrix}1& 2& 4 & 6& 1& 0& 0& 0\\0& 1& 2 & 0& 0& 1& 0& 0\\0 & 0& 1 & 2& 0& 0& 1& 0\\ 0& 0& 0& 2& 0& 0& 0& 1 \end{bmatrix}
\Rightarrow\begin{cases}R_1-2R_2\\{1\over2}R_4 \end{cases} \begin{bmatrix}1& 0& 0 & 6& 1& -2& 0& 0\\0& 1& 2 & 0& 0& 1& 0& 0\\0 & 0& 1 & 2& 0& 0& 1& 0\\ 0& 0& 0& 1& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow\begin{cases}R_1-6R_4\\R_2-2R_3 \end{cases} \begin{bmatrix}1& 0& 0 & 0& 1& -2& 0& -3\\0& 1& 0 & -4& 0& 1& -2& 0\\0 & 0& 1 & 2& 0& 0& 1& 0\\ 0& 0& 0& 1& 0& 0& 0& {1\over2} \end{bmatrix}
\Rightarrow\begin{cases}R_2+4R_4\\R_3-2R_4 \end{cases} \begin{bmatrix}1& 0& 0 & 0& 1& -2& 0& -3\\0& 1& 0 & 0& 0& 1& -2& 2\\0 & 0& 1 & 0& 0& 0& 1& -1\\ 0& 0& 0& 1& 0& 0& 0& {1\over2} \end{bmatrix}
Thus it is non-singular and its inverse is \begin{bmatrix}1& -2& 0& -3\\ 0& 1& -2& 2\\ 0& 0& 1& -1\\ 0& 0& 0& {1\over2} \end{bmatrix}.
(f) \begin{bmatrix}1& 2& 3\\4& 5& 6\\5& 7& 9 \end{bmatrix}\Rightarrow R_3-R_1 \begin{bmatrix}1& 2& 3\\4& 5& 6\\4& 5& 6 \end{bmatrix}\Rightarrow R_2-R_3 \begin{bmatrix}1& 2& 3\\0&0& 0\\4& 5& 6 \end{bmatrix}
which is singular matrix.
15. Let A be a non-singular n\times n matrix. Prove that A^{t} is non-singular and that (A^{t})^{-1}=(A^{-1})^{t}.
Solution:
AA^{-1}=I_n=A^{-1}A\Rightarrow (AA^{-1})^{t}= (I_n)^{t}=(A^{-1}A)^{t}
\Rightarrow (A^{-1})^{t}A^{t}=I_n=A^{t}(A^{-1})^{t}
Thus A^{t} is singular and its inverse is (A^{-1})^{t}.
16. Prove that A=\begin{bmatrix}a& b\\c& d \end{bmatrix} has no inverse if ad-bc=0.
Solution:
From Problems 2.4 Question 3 we know that A^2-(a+d)A+(ad-bc)I_2=0, so if ad-bc=0 and suppose that A^{-1} exists, then we have A^2=(a+d)A\Rightarrow A=(a+d)I_2
\Rightarrow \begin{bmatrix}a& b\\c& d \end{bmatrix}=\begin{bmatrix}a+d& 0\\ 0& a+d \end{bmatrix}
\Rightarrow a=b=c=d=0\Rightarrow ad-bc=0
which is contradiction.
17. Prove that the real matrix A=\begin{bmatrix}1& a& b\\-a& 1& c\\-b& -c& 1 \end{bmatrix} is non-singular by proving that A is row-equivalent to I_3.
Solution:
A=\begin{bmatrix}1& a& b\\-a& 1& c\\-b& -c& 1 \end{bmatrix}
\Rightarrow \begin{cases}R_2+aR_1\\ R_3+bR_1 \end{cases} \begin{bmatrix}1& a& b\\0& 1+a^2& c+ab\\0& ab-c& 1+b^2 \end{bmatrix}
\Rightarrow {1\over1+a^2}R_2\begin{bmatrix}1& a& b\\0& 1& {c+ab\over1+a^2}\\0& ab-c& 1+b^2 \end{bmatrix}
\Rightarrow R_3-(ab-c)R_2\begin{bmatrix}1& a& b\\0& 1& {c+ab\over1+a^2}\\0& 0& 1+b^2-{(ab-c)(c+ab)\over1+a^2} \end{bmatrix}
Since 1+b^2-{(ab-c)(c+ab)\over1+a^2} = 1+b^2+{(c+ab)(c-ab)\over1+a^2}
={1+a^2+b^2+a^2b^2+c^2-a^2b^2\over1+a^2} = {1+a^2+b^2+c^2\over1+a^2}\neq0
Thus A is equivalent to I_3 and it is non-singular.
18. If P^{-1}AP=B, prove that P^{-1}A^{n}P=B^{n} for n\geq1.
Solution:
Use mathematical induction. Suppose that P^{-1}A^{n}P=B^{n}, then B^{n+1}= (P^{-1}AP)^{n+1}= (P^{-1}AP)^{n}(P^{-1}AP)
=P^{-1}A^{n}PP^{-1}AP = P^{-1}A^{n}AP=P^{-1}A^{n+1}P
19. Let A=\begin{bmatrix}{2\over3}&{1\over4}\\ {1\over3}&{3\over4} \end{bmatrix}, P=\begin{bmatrix}1& 3\\-1& 4 \end{bmatrix}. Verify that P^{-1}AP=\begin{bmatrix}{5\over12}&0\\ 0&1 \end{bmatrix} and deduce that A^{n}={1\over7}\begin{bmatrix}3 &3\\4& 4 \end{bmatrix} + {1\over7}\left({5\over12}\right) ^{n}\begin{bmatrix}4 &-3\\-4& 3 \end{bmatrix}.
Solution:
\begin{bmatrix}1& 3 &1& 0\\-1& 4& 0& 1\end{bmatrix}
\Rightarrow R_2+R_1 \begin{bmatrix}1& 3 &1& 0\\0& 7& 1& 1\end{bmatrix}
\Rightarrow {1\over7}R_2 \begin{bmatrix}1& 3 &1& 0\\0& 1& {1\over7}& {1\over7}\end{bmatrix}
\Rightarrow R_1-3R_2 \begin{bmatrix}1& 0 &{4\over7}& -{3\over7}\\0& 1& {1\over7}& {1\over7}\end{bmatrix}
Thus P^{-1}={1\over7}\begin{bmatrix}4& -3\\1& 1 \end{bmatrix}, and P^{-1}AP= {1\over7}\begin{bmatrix}4& -3\\1& 1 \end{bmatrix}\cdot \begin{bmatrix}{2\over3}&{1\over4}\\ {1\over3}&{3\over4} \end{bmatrix} \cdot \begin{bmatrix}1& 3\\-1& 4 \end{bmatrix} = {1\over7}\begin{bmatrix}{5\over3}& -{5\over4}\\ 1&1 \end{bmatrix} \cdot \begin{bmatrix}1& 3\\-1& 4 \end{bmatrix}
={1\over7} \begin{bmatrix}{35\over12}& 0\\0& 7\end{bmatrix} = \begin{bmatrix} {5\over12}&0\\ 0&1 \end{bmatrix}=B
From the previous question, we know that P^{-1}A^{n}P=B^{n}= \begin{bmatrix} \left({5\over12}\right)^{n}&0\\ 0&1^n \end{bmatrix}. Hence A^n=PB^{n}P^{-1}= \begin{bmatrix}1& 3\\-1& 4 \end{bmatrix}\cdot \begin{bmatrix} \left({5\over12}\right)^{n}&0\\ 0&1 \end{bmatrix} \cdot {1\over7}\begin{bmatrix}4& -3\\1& 1 \end{bmatrix}
={1\over7}\begin{bmatrix}\left({5\over12}\right)^{n}&3\\-\left({5\over12}\right)^{n} &4 \end{bmatrix}\cdot \begin{bmatrix}4& -3\\1& 1 \end{bmatrix}
={1\over7} \begin{bmatrix}4\cdot\left({5\over12}\right)^{n}+3& -3\cdot \left({5\over12}\right)^{n}+3 \\-4\cdot\left({5\over12}\right)^{n}+4& 3\cdot \left({5\over12}\right)^{n}+4 \end{bmatrix}
= {1\over7}\begin{bmatrix}3 &3\\4& 4 \end{bmatrix} + {1\over7}\left({5\over12}\right) ^{n}\begin{bmatrix}4 &-3\\-4& 3 \end{bmatrix}
20. Let A=\begin{bmatrix}a& b\\c& d \end{bmatrix} be a Markov matrix; that is a matrix whose elements are non-negative and satisfy a+c=1=b+d. Also let P=\begin{bmatrix}b& 1\\c& -1 \end{bmatrix}. Prove that if A\neq I_2 then
(1) P is non-singular and P^{-1}AP=\begin{bmatrix}1& 0\\ 0& a+d-1 \end{bmatrix},
(2) A^{n}\to{1\over b+c}\begin{bmatrix}b& b\\ c& c \end{bmatrix} as n\to\infty, if A\neq \begin{bmatrix}0& 1\\ 1& 0 \end{bmatrix}.
Solution:
(1) If P is non-singular then \Delta=-b-c\neq0. Since a+c=1 and all of the elements are non-negative, so -b-c = -(b+c) \leq0. If b+c=0, then b=c=0\Rightarrow a=d=1\Rightarrow A=\begin{bmatrix}1& 0\\0& 1 \end{bmatrix} = I_2. Thus, if A\neq I_2 then P is non-singular and P^{-1}={1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}. Hence P^{-1}AP= {1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix} \cdot \begin{bmatrix}a& b\\c& d \end{bmatrix} \cdot \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-a-c& -b-d\\-ac+bc& -bc+bd \end{bmatrix} \cdot \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-1& -1\\-ac+bc& -bc+bd \end{bmatrix} \cdot \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-b-c& 0\\-abc+b^2c-bc^2+bcd& -ac+bc+bc-bd \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-b-c& 0\\-bc(a-b+c-d)& -ac+b(1-a)+c(1-d)-bd \end{bmatrix}
= {1\over-b-c}\cdot \begin{bmatrix}-b-c& 0\\0 & (-b-c)(a+d-1) \end{bmatrix}= \begin{bmatrix}1& 0\\ 0& a+d-1 \end{bmatrix}
(2) Since P^{-1}A^{n}P=(P^{-1}AP)^n = \begin{bmatrix}1& 0\\ 0& (a+d-1)^n \end{bmatrix}
Hence A^{n} =P \begin{bmatrix}1& 0\\ 0& (a+d-1)^n \end{bmatrix} P^{-1}
= \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}\cdot \begin{bmatrix}1& 0\\ 0& (a+d-1)^n \end{bmatrix} \cdot {1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}
Since when n\to\infty, a+d-1\to0 for 0 < a+d < 2, otherwise A= \begin{bmatrix}0& 1\\ 1& 0 \end{bmatrix}. Thus A^{n} = \begin{bmatrix}b& 1\\c& -1 \end{bmatrix}\cdot \begin{bmatrix}1& 0\\ 0& 0 \end{bmatrix} \cdot {1\over-b-c} \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}
={1\over-b-c} \begin{bmatrix}b& 0\\ c& 0 \end{bmatrix} \cdot \begin{bmatrix}-1& -1\\-c& b \end{bmatrix}
= {1\over-b-c} \begin{bmatrix}-b& -b\\-c& -c \end{bmatrix} ={1\over b+c} \begin{bmatrix}b& b\\c& c \end{bmatrix}.
21. If X=\begin{bmatrix}1& 2\\ 3& 4\\ 5& 6 \end{bmatrix} and Y=\begin{bmatrix}-1\\3\\4 \end{bmatrix}, find XX^{t}, X^{t}X, YY^{t}, Y^{t}Y.
Solution:
X^{t}=\begin{bmatrix}1& 3& 5\\2& 4& 6 \end{bmatrix} and Y^{t}=\begin{bmatrix}-1& 3& 4 \end{bmatrix}. Note that A^{t}A MUST be symmetric. XX^{t} = \begin{bmatrix}1& 2\\ 3& 4\\ 5& 6 \end{bmatrix}\cdot \begin{bmatrix}1& 3& 5\\2& 4& 6 \end{bmatrix} = \begin{bmatrix}5& 11& 17\\ 11& 25 & 39\\ 17& 39& 61 \end{bmatrix}
X^{t}X = \begin{bmatrix}1& 3& 5\\2& 4& 6 \end{bmatrix} \cdot \begin{bmatrix}1& 2\\ 3& 4\\ 5& 6 \end{bmatrix} = \begin{bmatrix}35& 44\\44& 56 \end{bmatrix}
YY^{t} = \begin{bmatrix}-1\\3\\4 \end{bmatrix} \cdot \begin{bmatrix}-1& 3& 4 \end{bmatrix} = \begin{bmatrix}1& -3& -4\\ -3& 9 & 12\\ -4& 12& 16 \end{bmatrix}
Y^{t}Y = \begin{bmatrix}-1& 3& 4 \end{bmatrix} \cdot \begin{bmatrix}-1\\3\\4 \end{bmatrix} = 26
22. Prove that the system of linear equations \begin{cases}x+2y=4\\ x+y=5\\3x+5y=12 \end{cases}
is inconsistent and find a least squares solution of the system.
Solution:
The augmented matrix is \begin{bmatrix}1& 2& 4\\1& 1& 5\\3& 5& 12 \end{bmatrix}\Rightarrow \begin{bmatrix}1& 2& 4\\0& -1& 1\\0& -1& 0 \end{bmatrix}\Rightarrow \begin{bmatrix}1& 0& 4\\0& 0& 1\\0& -1& 0 \end{bmatrix}\Rightarrow \begin{bmatrix}1& 0& 0\\0& 1& 0\\0& 0& 1 \end{bmatrix}
The last row indicates that this is inconsistent system.
Since A=\begin{bmatrix}1& 2\\1& 1\\3& 5 \end{bmatrix}, X=\begin{bmatrix}x \\ y \end{bmatrix}, and B=\begin{bmatrix}4\\5\\12 \end{bmatrix}. So the normal equation is A^{t}AX=A^{t}B
\Rightarrow \begin{bmatrix}1& 1& 3\\2& 1& 5 \end{bmatrix}\cdot \begin{bmatrix}1& 2\\1& 1\\3& 5 \end{bmatrix} X= \begin{bmatrix}1& 1& 3\\2& 1& 5 \end{bmatrix} \cdot \begin{bmatrix}4\\5\\12 \end{bmatrix}
\Rightarrow \begin{bmatrix}11& 18\\18& 30 \end{bmatrix}X = \begin{bmatrix}45\\73 \end{bmatrix}
\Rightarrow \begin{cases}x ={\Delta_1\over\Delta}= {\begin{vmatrix}45& 18\\73& 30 \end{vmatrix}\over \begin{vmatrix}11& 18\\18& 30 \end{vmatrix}} =6\\ y ={\Delta_2\over\Delta} = {\begin{vmatrix}11& 45\\18& 73 \end{vmatrix}\over \begin{vmatrix}11& 18\\18& 30 \end{vmatrix}} =-{7\over6} \end{cases}
23. The points (0, 0), (1, 0), (2, -1), (3, 4), (4, 8) are required to lie on a parabola y = a+bx+cx^2. Find a least squares solution for a, b, c. Also prove that no parabola passes through these points.
Solution:
The system is \begin{cases}a=0\\ a+b+c=0\\ a+2b+4c=-1\\ a+3b+9c=4\\ a+4b+16c=8 \end{cases}
That is, A=\begin{bmatrix} 1& 0& 0\\ 1& 1& 1\\ 1& 2& 4\\ 1& 3& 9\\ 1& 4& 16\end{bmatrix}, X=\begin{bmatrix}a\\b\\c \end{bmatrix}, and B=\begin{bmatrix}0\\ 0\\ -1\\ 4\\8 \end{bmatrix}. The normal equation is A^{t}AX=A^{t}B
\Rightarrow \begin{bmatrix}1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 1& 4& 9& 16 \end{bmatrix} \cdot \begin{bmatrix} 1& 0& 0\\ 1& 1& 1\\ 1& 2& 4\\ 1& 3& 9\\ 1& 4& 16\end{bmatrix}X = \begin{bmatrix}1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 1& 4& 9& 16 \end{bmatrix} \cdot \begin{bmatrix}0\\ 0\\ -1\\ 4\\8 \end{bmatrix}
\Rightarrow \begin{bmatrix}5& 10& 30\\ 10& 30& 100\\ 30& 100& 354 \end{bmatrix}X = \begin{bmatrix}11\\ 42\\ 160\end{bmatrix}
The augmented matrix is \begin{bmatrix}5& 10& 30 & 11\\ 10& 30& 100 &42\\ 30& 100& 354 &160\end{bmatrix}
\Rightarrow \begin{bmatrix}1& 2& 6& {11\over5}\\ 1& 3& 10& {21\over5}\\1& {10\over3}& {59\over5}& {16\over3} \end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 6& {11\over5}\\ 0& 1& 4& 2\\0& {4\over3}& {29\over5}& {47\over15} \end{bmatrix}
\Rightarrow \begin{bmatrix}1& 0& -2& -{9\over5}\\ 0& 1& 4& 2\\0& 0& {7\over15}& {7\over15} \end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2& -{9\over5}\\ 0& 1& 4& 2\\0& 0& 1& 1 \end{bmatrix}
\Rightarrow \begin{bmatrix}1& 0& 0& {1\over5}\\ 0& 1& 0& -2\\0& 0& 1& 1 \end{bmatrix}\Rightarrow \begin{cases}a={1\over5} \\b=-2 \\c=1 \end{cases}
Next, for the original system AX=B, its augmented matrix is \begin{bmatrix} 1& 0& 0& 0\\ 1& 1& 1& 0\\ 1& 2& 4& -1\\ 1& 3& 9 &4 \\ 1& 4& 16 &8\end{bmatrix}
\Rightarrow \begin{bmatrix} 1& 0& 0& 0\\ 0& 1& 1& 0\\ 0& 2& 4& -1\\ 0& 3& 9 &4 \\ 0& 4& 16 &8\end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0& 0\\ 0& 1& 1& 0\\ 0& 0& 2& -1\\ 0& 0& 6 &4 \\ 0& 0& 12 & 8 \end{bmatrix}
\Rightarrow \begin{bmatrix} 1& 0& 0& 0\\ 0& 1& 1& 0\\ 0& 0& 2& -1\\ 0& 0& 0 &7 \\ 0& 0& 0 & 0 \end{bmatrix}
The last matrix is inconsistent which means no parabola passes through these points.
24. If A is a symmetric n\times n real matrix and B is n\times m, prove that B^{t}AB is a symmetric m\times m matrix.
Solution:
(B^{t}AB)^{t}= B^{t}A^{t}(B^{t})^{t}=B^{t}A^{t}B = B^{t}AB
Thus, B^{t}AB is a symmetric matrix.
25. If A is m\times n and B is n\times m, prove that AB is singular if m > n.
Solution:
Since m > n, so the homogeneous system BX=0 has a non-trivial solution X_0 (i.e. the number of unknowns is greater than the number of equations). Hence we have A(BX_0) = ABX_0 = (AB)X_0 = 0
which means AB (m\times m squares) is singular (if the homogeneous system AX=0 has a non-trivial solution, then A is singular).
26. Let A and B be n\times n. If A or B is singular, prove that AB is also singular.
Solution:
If B is singular, then we know that the homogeneous system BX = 0 has a non-trivial solution X_0, that is A(BX_0)=(AB)X_0=0
which means that AB is also singular since X_0 is a non-trivial solution.\\
If A is singular, then A^{t} is also singular (see Question 15). So the homogeneous system A^{t}X=0 has a non-trivial solution X_0, and we have B^{t}(A^{t}X_0)=0 \Rightarrow (B^{t}A^{t})X_0=0
\Rightarrow (AB)^{t}X_0=0
which means (AB)^{t} is singular, and thus AB is also singular.
没有评论:
发表评论