The free printable PDF format lecture can be Downloaded Here
Summary
- A subset S of F^{n} is called a subspace of F^{n} if
- 0\in S;
- If u\in S and v\in S, then u+v\in S;
- If u\in S and t\in F, then tu\in S.
- Let X_1, \cdots, X_m\in F^{n}. Then the set consisting of all linear combinations x_1X_1+\cdots+x_mX_m, where x_1, \cdots, x_m\in F, is a subspace of F^{n}. This subspace is called the subspace spanned or generated by X_1, \cdots, X_m and is denoted by \big < X_1, \cdots, X_m\big > . We also call X_1, \cdots, X_m a spanning family for S=\big < X_1, \cdots, X_m\big > .
- Let A\in M_{m\times n}(F). Then the set of vectors X\in F^{n} satisfying AX=0 is a subspace of F^{n} called the null space of A and is denoted by N(A).
- If A\in M_{m\times n}(F), the subspace generated by the columns of A is the subspace of F^{m} and is called the column space of A, C(A). Similarly, the subspace generated by the rows of A is the subspace of F^{n} and is called the row space of A, R(A).
- Suppose each of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s. Then any linear combination of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s. That is, \big < X_1, \cdots, X_r\big > \subseteq\big < Y_1, \cdots, Y_s\big > .
- Subspaces \big < X_1, \cdots, X_r\big > and \big < Y_1, \cdots, Y_s\big > are equal if each of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s and each of Y_1, \cdots, Y_s is a linear combination of X_1, \cdots, X_r.
- \big < X_1,\cdots, X_r, Z_1, \cdots, Z_t\big > and \big < X_1,\cdots, X_r\big > are equal if each of Z_1, \cdots, Z_t is a linear combination of X_1,\cdots, X_r.
- If A is row equivalent to B, then R(A)=R(B). (Note that it is not always true that C(A)=C(B))
- Linearly dependent and linear independent
Vectors X_1, \cdots, X_m in F^{n} are said to be linearly dependent if there exist scalars x_1, \cdots, x_m, not all zero, such that x_1X_1+\cdots +x_mX_m=0. X_1, \cdots, X_m are called linearly independent if they are not linearly dependent. Hence X_1, \cdots, X_m are linearly independent if and only if the equation x_1X_1+\cdots +x_mX_m=0 has only the trivial solution x_1=0,\cdots, x_m=0. - A family of m vectors in F^{n} will be linearly dependent if m > n. Equivalently, any linearly independent family of m vectors in F^{n} must satisfy m \leq n.
- A family of s vectors in \big < X_1, \cdots, X_r\big > will be linearly dependent if s > r. Equivalently, a linearly independent family of s vectors in \big < X_1, \cdots, X_r\big > must have s \leq r.
- Left-to-right test
Vectors X_1, \cdots, X_m in F^{n} are linearly independent if
- X_1 \neq 0;
- For each k with 1 < k \leq m, X_k is not a linear combination of X_1, \cdots, X_{k-1}.
- Every subspace S of F^{n} can be represented in the form S=\big < X_1\cdots X_m\big > , where m \leq n.
- Suppose that A is row equivalent to B and let c_1, \cdots, c_r be distinct integers satisfying 1 \leq c_i \leq n. Then
- Columns A_{* c_1}, \cdots, A_{* c_r} of A are linearly dependent if and only if the corresponding columns of B are linearly dependent; indeed more is true: x_1A_{*c_1}+\cdots + x_rA_{*c_r}=0\Leftrightarrow x_1B_{*c_1}+\cdots + x_rB_{*c_r}=0
- Columns A_{* c_1}, \cdots, A_{* c_r} of A are linearly independent if and only if the corresponding columns of B are linearly independent.
- If 1 \leq c_{r+1} \leq n and c_{r+1} is distinct from c_1, \cdots, c_r, then A_{*c_{r+1}}= z_1A_{*c_{1}}+ \cdots + z_rA_{*c_{r}}\Leftrightarrow B_{*c_{r+1}}= z_1B_{*c_{1}}+ \cdots + z_rB_{*c_{r}}
- Basis
Vectors X_1, \cdots, X_m belonging to a subspace S are said to form a basis of S if
- Every vector in S is a linear combination of X_1, \cdots, X_m;
- X_1, \cdots, X_m are linearly independent.
- A subspace of the form \big < X_1, \cdots, X_m\big > , where at least one of X_1, \cdots, X_m is non-zero, has a basis X_{c_1}, \cdots, X_{c_r}, where 1 \leq c_1 < \cdots < c_r \leq m.
- Left-to-right algorithm
- A subspace of the form \big < X_1, \cdots, X_m\big > . Let c_1 be the least index k for which X_k is non-zero. If c_1=m or if all the vectors X_k with k > c_1 are linear combinations of X_{c_1}, terminate the algorithm and let r = 1. Otherwise let c_2 be the least integer k > c_1 such that X_k is not a linear combination of X_{c_1}.
- If c_2=m or if all the vectors X_k with k > c_2 are linear combinations of X_{c_1} and X_{c_2}, terminate the algorithm and let r = 2. Eventually the algorithm will terminate at the rth stage, either because c_r=m, or because all vectors X_k with k > c_r are linear combinations of X_{c_1}, \cdots, X_{c_r}.
- X_{c_1}, \cdots, X_{c_r} is called the left-to-right basis for the subspace \big < X_1, \cdots, X_m\big > . For example, 2X, -Y is the left-to-right basis of \big < 0, 2X, X, -Y, X+Y\big >
- Dimension
Any two bases for a subspace S must contain the same number of elements. This number is called the dimension of S and is written \dim S. Naturally we define \dim{0} = 0. - A linearly independent family of m vectors in a subspace S, with \dim S=m, must be a basis for S.
- Rank and nullity
- column rank A = \dim C(A);
- row rank A = \dim R(A);
- nullity A= \dim N(A).
- Let A\in M_{m\times n}(F). Then
- column rank A = row rank A;
- column rank A + nullity A = n.
- The common value if column rank A and row rank A is called the rank of A.
- Every linearly independent family of vectors in a subspace S can be extended to a basis of S.
Problems 3.6
1. Which of the following subsets of \mathbb{R}^2 are subspaces? (a) [x, y] satisfying x=2y; (b) [x, y] satisfying x=2y and 2x=y; (c) [x, y] satisfying x=2y+1; (d) [x, y] satisfying xy=0; (e) [x, y] satisfying x \geq 0 and y \geq 0.
Solution:
(a) (1) [0, 0]\in S; (2) Suppose [x_1, y_1]\in S and [x_2, y_2]\in S, so x_1+x_2 = 2y_1+2y_2=2(y_1+y_2), that is [x_1+x_2, y_1+y_2] = [x_1, y_1] + [x_2, y_2]\in S; (3) Suppose t\in R, so tx = t\cdot2y=2(ty), that is [tx, ty]=t[x, y]\in S. Hence this is subspace. (b) We have x = 2y=4x\Rightarrow x=y=0. That is, S=\{[0, 0]\} which is consisting of zero vector, and it is always subspace. (c) [0, 0]\notin S hence it is not subspace. (d) xy=0\Rightarrow x=0 or y=0. But it is not closed under addition, for example, [0, 1] + [1, 0]=[1, 1]\notin S. Hence it is not subspace. (e) This is not closed under scalar multiplication. For example, [1, 0] \in S and t=-1\in R, but t[1, 0]=[-1, 0]\notin S. Hence it is not subspace.
2. If X, Y, Z are vectors in \mathbb{R}^n, prove that \big < X, Y, Z\big > = \big < X+Y, X+Z, Y+Z \big >
Solution:
First, each of X+Y, X+Z, Y+Z is a linear combination of X, Y, Z. So \big < X+Y, X+Z, Y+Z \big > \subseteq \big < X, Y, Z\big > On the other hand, \begin{cases}X={1\over2}(X+Y) + {1\over2}(X+Z) - {1\over2}(Y+Z)\\ Y={1\over2}(X+Y) - {1\over2}(X+Z) + {1\over2}(Y+Z)\\ Z=-{1\over2}(X+Y) + {1\over2}(X+Z) + {1\over2}(Y+Z) \end{cases} That is, each of X, Y, Z is a linear combination of X+Y, X+Z, Y+Z, so \big < X, Y, Z\big > \subseteq \big < X+Y, X+Z, Y+Z \big > Thus, \big < X, Y, Z\big > = \big < X+Y, X+Z, Y+Z \big > .
3. Determine if X_1 = \begin{bmatrix}1\\0\\ 1\\ 2 \end{bmatrix}, X_2 = \begin{bmatrix}0\\1\\ 1\\ 2 \end{bmatrix}, and X_3 = \begin{bmatrix}1\\ 1\\ 1\\ 3 \end{bmatrix} are linearly independent in \mathbb{R}^4.
Solution:
Suppose we have xX_1+yX_2+zX_3=0, that is \begin{cases}x + z=0\\ y+z =0\\ x+y+z = 0\\ 2x+2y+3z = 0 \end{cases} \Rightarrow x=y=z=0 Thus they are linearly independent.
4. For which real number \lambda are the following vectors linearly independent in \mathbb{R}^3? X_1=\begin{bmatrix}\lambda\\ -1\\ -1 \end{bmatrix}, X_2=\begin{bmatrix}-1\\ \lambda\\ -1 \end{bmatrix}, X_3=\begin{bmatrix}-1\\ -1\\ \lambda \end{bmatrix}.
Solution:
Suppose there exists x, y, z satisfying xX_1+yX_2+zX_3= 0. That is \begin{cases}\lambda x -y -z=0\\ -x + \lambda y-z =0\\ -x -y +\lambda z = 0\end{cases} \Rightarrow \begin{bmatrix}\lambda & -1& -1\\ -1& \lambda& -1\\ -1& -1& \lambda \end{bmatrix} \Rightarrow\begin{cases}R_1 + \lambda R_3\\ R_2-R_3\\ -R_3 \end{cases}\begin{bmatrix}0 & -\lambda-1& \lambda^2-1\\ 0& \lambda+1& -1-\lambda\\ 1& 1 & -\lambda \end{bmatrix} If \lambda = -1, then \begin{bmatrix}0 & 0& 0\\ 0& 0& 0\\ 1& 1 & 1 \end{bmatrix}\Rightarrow x = -y-z which means there are non-trivial solutions. Thus \lambda \neq -1. We have \begin{bmatrix}0 & -\lambda-1& \lambda^2-1\\ 0& \lambda+1& -1-\lambda\\ 1& 1 & -\lambda \end{bmatrix} \Rightarrow\begin{cases}{1\over\lambda+1} R_1\\ {1\over\lambda+1} R_2 \end{cases} \begin{bmatrix}0 & -1& \lambda-1\\ 0& 1& -1\\ 1& 1 & -\lambda \end{bmatrix} \Rightarrow\begin{cases}R_1 + R_2\\ R_3-R_2 \end{cases} \begin{bmatrix}0 & 0& \lambda-2\\ 0& 1& -1\\ 1& 0 & -\lambda+1 \end{bmatrix} If \lambda = 2, then \begin{bmatrix}0 & 0& 0\\ 0& 1& -1\\ 1& 0 & -1 \end{bmatrix} \Rightarrow \begin{cases}x = z\\ y = z \end{cases} which means there are non-trivial solutions. Thus \lambda \neq 2. Hence we have \begin{bmatrix}0 & 0& \lambda-2\\ 0& 1& -1\\ 1& 0 & -\lambda+1 \end{bmatrix} \Rightarrow {1\over\lambda-2}R_1 \begin{bmatrix}0 & 0& 1\\ 0& 1& -1\\ 1& 0 & -\lambda+1 \end{bmatrix} \Rightarrow \begin{cases}R_2+R_1\\ R_3+(\lambda-1)R_1 \end{cases} \begin{bmatrix}0 & 0& 1\\ 0& 1& 0\\ 1& 0 & 0 \end{bmatrix} \Rightarrow x= y= z = 0 Therefore, it is linearly independent when \lambda\neq -1, 2.
5. Find bases for the row, column and null spaces of the following matrix over \mathbb{Q}: A=\begin{bmatrix}1& 1& 2& 0& 1\\ 2& 2& 5& 0& 3\\ 0& 0& 0& 1& 3\\ 8& 11& 19& 0& 11 \end{bmatrix}
Solution:
A=\begin{bmatrix}1& 1& 2& 0& 1\\ 2& 2& 5& 0& 3\\ 0& 0& 0& 1& 3\\ 8& 11& 19& 0& 11 \end{bmatrix} \Rightarrow\begin{cases}R_2- 2R_1\\ R_4-8R_1\end{cases} \begin{bmatrix}1& 1& 2& 0& 1\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 3& 3& 0& 3 \end{bmatrix} \Rightarrow{1\over3} R_4 \begin{bmatrix}1& 1& 2& 0& 1\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 1& 1& 0& 1 \end{bmatrix} \Rightarrow \begin{cases}R_1-R_4\\ R_4-R_2\end{cases} \begin{bmatrix}1& 0& 1& 0& 0\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 1& 0& 0& 0 \end{bmatrix} \Rightarrow R_1-R_2 \begin{bmatrix}1& 0& 0& 0& -1\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 1& 0& 0& 0 \end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& 0& 0& -1\\ 0& 1& 0& 0& 0\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3 \end{bmatrix} = B Thus, the bases of R(A) and C(A) are: \begin{cases}R(A): & [1, 0, 0, 0, -1], [0, 1, 0, 0, 0], [0, 0, 1, 0, 1], [0, 0, 0, 1, 3]\\ C(A): & [1, 2, 0, 8]^{t}, [1, 2, 0, 11]^{t}, [2, 5, 0, 19]^{t}, [0, 0, 1, 0]^{t}\\ \end{cases} For N(A), we have AX=0 where A=[x_1, x_2, x_3, x_4, x_5]^{t}, that is \begin{cases}x_1=x_5\\ x_2=0\\x_3=-x_5\\ x_4=-3x_5 \end{cases}\Rightarrow X=\begin{bmatrix}x_5\\ 0\\ -x_5\\ -3x_5\\ x_5 \end{bmatrix} = x_5\begin{bmatrix}1\\ 0\\ -1\\ -3\\ 1 \end{bmatrix} Hence the basis of N(A) is [1, 0, -1, -3, 1]^{t}.
6. Find bases for the row, column and null spaces of the following matrix over \mathbb{Z}_2: A=\begin{bmatrix}1& 0& 1& 0& 1\\ 0& 1& 0& 1& 1\\ 1& 1& 1& 1& 0\\ 0& 0& 1& 1& 0 \end{bmatrix}
Solution:
Recall that 1 + 1 = 0 \Rightarrow -1=1 in \mathbb{Z}_2 field.
A=\begin{bmatrix}1& 0& 1& 0& 1\\ 0& 1& 0& 1& 1\\ 1& 1& 1& 1& 0\\ 0& 0& 1& 1& 0 \end{bmatrix} \Rightarrow R_3-R_1 \begin{bmatrix}1& 0& 1& 0& 1\\ 0& 1& 0& 1& 1\\ 0& 1& 0& 1& 1\\ 0& 0& 1& 1& 0 \end{bmatrix} \Rightarrow \begin{cases}R_3-R_2\\ R_1-R_4\end{cases} \begin{bmatrix}1& 0& 0& 1& 1\\ 0& 1& 0& 1& 1\\ 0& 0& 0& 0& 0\\ 0& 0& 1& 1& 0 \end{bmatrix} \Rightarrow R_3\leftrightarrow R_4\begin{bmatrix}1& 0& 0& 1& 1\\ 0& 1& 0& 1& 1\\ 0& 0& 1& 1& 0 \\ 0& 0& 0& 0& 0 \end{bmatrix} The bases of R(A) and C(A) are: \begin{cases}R(A): & [1, 0, 0, 1, 1], [0, 1, 0, 1, 1], [0, 0, 1, 1, 0]\\ C(A): & [1, 0, 1, 0]^{t}, [0, 1, 1, 0]^{t}, [1, 0, 1, 1]^{t}\end{cases} For N(A) we have \begin{cases}x_1=-x_4-x_5=x_4+x_5\\ x_2=-x_4-x_5=x_4+x_5\\ x_3= -x_4=x_4\\ x_4=x_4\\x_5=x_5 \end{cases}\Rightarrow X=x_4\begin{bmatrix}1\\ 1\\ 1\\ 1\\ 0 \end{bmatrix} + x_5\begin{bmatrix}1\\ 1\\ 0\\ 0\\ 1 \end{bmatrix} Hence the basis of N(A) is [1, 1, 1, 1, 0]^{t}, [1, 1, 0, 0, 1]^{t}.
7. Find bases for the row, column and null spaces of the following matrix over \mathbb{Z}_5: A=\begin{bmatrix}1& 1& 2& 0& 1 & 3\\ 2& 1& 4& 0& 3 & 2\\ 0& 0& 0& 1& 3 &0\\ 3& 0& 2& 4& 3 & 2 \end{bmatrix}
Solution:
Recall that for x \notin \{0, 1, 2, 3, 4\} we have \begin{cases}x - 5n & x > 0\\ 5n - x & x < 0 \end{cases}, for example, 8 = 8 - 5 = 3, -8 = 10 - 8 = 2. A=\begin{bmatrix}1& 1& 2& 0& 1 & 3\\ 2& 1& 4& 0& 3 & 2\\ 0& 0& 0& 1& 3 &0\\ 3& 0& 2& 4& 3 & 2 \end{bmatrix} \Rightarrow \begin{cases}R_2-2R_1\\ R_4-3R_1 \end{cases} \begin{bmatrix}1& 1& 2& 0& 1 & 3\\ 0& 4& 0& 0& 1 & 1\\ 0& 0& 0& 1& 3 &0\\ 0& 2& 1& 4& 0 & 3 \end{bmatrix} \Rightarrow\begin{cases}2R_1-R_4\\ R_2-2R_4 \end{cases} \begin{bmatrix}2& 0& 3& 1& 2 & 3\\ 0& 0& 3& 2& 1 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 2& 1& 4& 0 & 3 \end{bmatrix} \Rightarrow \begin{cases} R_1-R_2\\ 3R_4-R_2\end{cases} \begin{bmatrix}2& 0& 0& 4& 1 & 3\\ 0& 0& 3& 2& 1 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 1& 0& 0& 4 & 4 \end{bmatrix} \Rightarrow \begin{cases} R_1-4R_3\\ R_2-2R_3\end{cases} \begin{bmatrix}2& 0& 0& 0& 4 & 3\\ 0& 0& 3& 0& 0 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 1& 0& 0& 4 & 4 \end{bmatrix} = \begin{bmatrix}2& 0& 0& 0& 4 & 8\\ 0& 0& 3& 0& 0 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 1& 0& 0& 4 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& 0& 0& 2 & 4\\ 0& 1& 0& 0& 4 & 4\\ 0& 0& 1& 0& 0 & 0\\ 0& 0& 0& 1& 3 &0\end{bmatrix} Thus the bases of R(A) and C(A) are: \begin{cases}R(A):& [1, 0, 0, 0, 2, 4], [0, 1, 0, 0, 4, 4], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 3, 0] \\ C(A): & [1, 2, 0, 3]^{t}, [1, 1, 0, 0]^{t}, [2, 4, 0, 2]^{t}, [0, 0, 1, 4]^{t}\end{cases} For N(A), we have \begin{cases}x_1=-2x_5-4x_6=3x_5+x_6\\ x_2 = -4x_5 - 4x_6= x_5+x_6\\ x_3=0\\ x_4 = -3x_5=2x_5\\ x_5 = x_5\\ x_6 = x_6 \end{cases}\Rightarrow X=x_5\begin{bmatrix}3\\1\\0\\2\\1\\0 \end{bmatrix} + x_6 \begin{bmatrix}1\\1\\0\\0\\0\\1 \end{bmatrix} Hence the basis of N(A) is [3, 1, 0, 2, 1, 0]^{t}, [1, 1, 0, 0, 0, 1]^{t}.
8. Find bases for the row, column and null spaces of the matrix A defined in section 1.6, Problem 17.
Solution:
Recall that in section 1.6 Problem 17 we have the following result:
A=\begin{bmatrix}1& a& b& a\\ a& b& b& 1\\ 1& 1& 1& a \end{bmatrix} \Longleftrightarrow B=\begin{bmatrix}1& 0& 0& 0\\ 0& 1& 0& b\\0& 0& 1& 1 \end{bmatrix} And the addition and multiplication tables are in the following table.
Thus the bases of R(A) and C(A) are \begin{cases}R(A): &[1, 0, 0, 0], [0, 1, 0, b], [0, 0, 1, 1] \\ C(A): & [1, a, 1]^{t}, [a, b, 1]^{t}, [b, b, 1]^{t} \end{cases} For N(A) we have \begin{cases}x_1=0\\ x_2 = -bx_4 = bx_4\\ x_3 = -x_4=x_4\\ x_4=x_4 \end{cases} \Rightarrow X=x_4\begin{bmatrix}0\\ b\\1\\1 \end{bmatrix} Hence the basis of N(A) is [0, b, 1, 1]^{t}.
9. If X_1, \cdots, X_m form a basis for a subspace S, prove that X_1, X_1+X_2, \cdots, X_1+\cdots+X_m also form a basis of S.
Solution:
There are two phases, firstly prove linearly independent and then prove every vector in S is expressible by the basis.\\
Suppose that there exists x_1, \cdots, x_m such that x_1X_1+x_2(X_1+X_2)+\cdots+x_m(X_1+\cdots+X_m)=0 \Rightarrow (x_1+x_2+\cdots+x_m)X_1+(x_2+\cdots+x_m)X_2+\cdots+x_mX_m = 0 Since X_1, \cdots, X_m is linearly independent, so \begin{cases}x_1+x_2+\cdots+x_m = 0\\ x_2+\cdots+x_m =0\\ \vdots\\ x_m=0 \end{cases} \Rightarrow \begin{cases}x_1=0\\ x_2=0\\ \vdots\\ x_m=0\end{cases} which indicates that X_1, X_1+X_2, \cdots, X_1+\cdots+X_m are linearly independent. \\
Next, since X_1, \cdots, X_m is a basis of S, thus suppose a vector X\in S and we have X = a_1X_1+\cdots+a_mX_m = x_1X_1+x_2(X_1+X_2)+\cdots+x_m(X_1+\cdots+X_m) = (x_1+x_2+\cdots+x_m)X_1+(x_2+\cdots+x_m)X_2+\cdots+x_mX_m \Rightarrow \begin{cases}a_1 = x_1+x_2+\cdots+x_m\\ a_2 = x_2+\cdots+x_m\\ \vdots\\ a_m = x_m \end{cases} \Rightarrow \begin{cases}x_1=a_1-a_2\\ x_2=a_2-a_3\\ \vdots\\ x_m=a_m\end{cases} which means an arbitrary vector X\in S can be expressed by X_1, X_1+X_2, \cdots, X_1+\cdots+X_m.
10. Let A=\begin{bmatrix}a&b&c\\1&1&1\end{bmatrix}. Classify a, b, c such that (a) rank A = 1; (b) rank A = 2.
Solution:
(a) \begin{bmatrix}a&b&c\\1&1&1\end{bmatrix}\Rightarrow \begin{bmatrix}0&b-a&c-a\\1&1&1\end{bmatrix} Thus when b-a=c-a=0\Rightarrow a=b=c then rank A=1.
(b) Similarly to (a), b-a \neq 0 or c-a\neq 0, that is, at least two of a, b, c are distinct then rank A=2.
11. Let S be a subspace of F^n with \dim S=m. If X_1, \cdots, X_m are vectors in S with the property that S=\big < X_1, \cdots, X_m\big > , prove that X_1, \cdots, X_m form a basis for S.
Solution:
Consider Problem 9, we only need to prove the dependency of X_1, \cdots, X_m since S=\big < X_1, \cdots, X_m\big > has been given. \\
Without loss of generality, suppose X_1, \cdots, X_m are linear dependent and hence one of the vectors can be expressed by others: X_m= x_1X_1+\cdots+x_{m-1}X_{m-1} where x_i are not all zero for i=1, \cdots, m-1. This equation indicates that S can be spanned by m-1 vectors, say X_1, \cdots, X_{m-1}. This is contradict to S=\big < X_1, \cdots, X_m\big > .
12. Find a basis for the subspace S of \mathbb{R}^3 defined by the equation x + 2y + 3z =0 Verify that Y_1=[-1, -1, 1]^{t}\in S and find a basis for S which includes Y_1.
Solution:
First, (-1)+2(-1)+3=0\Rightarrow Y_1\in S. Then, we have
x + 2y + 3z =0\Rightarrow x=-2y-3z\Rightarrow \begin{bmatrix}x\\y\\z\end{bmatrix} = y\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} + z\begin{bmatrix}-3\\ 0\\ 1 \end{bmatrix} Hence [-2, 1, 0]^{t} and [-3, 0, 1]^{t} form a basis for S.
13. Let X_1, \cdots, X_m be vectors in F^n. If X_i = X_j, where i < j, prove that X_1, \cdots, X_m are linearly dependent.
Solution:
Without loss of generality, suppose X_1 = X_2, then we have 1\cdot X_1+(-1)\cdot X_2+0\cdot X_3+\cdots + 0\cdot X_m=0 which means X_1, \cdots, X_m are linearly dependent.
14. Let X_1, \cdots, X_{m+1} be vectors in F^n. Prove that \dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_1, \cdots, X_{m} \big > if X_{m+1} is a linear combination of X_1, \cdots, X_{m}, but \dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_1, \cdots, X_{m} \big > +1 if X_{m+1} is not a linear combination of X_1, \cdots, X_{m}.
Deduce that the system of linear equations AX=B is consistent, if and only if \text{rank}\ [A|B] = \text{rank}\ A.
Solution:
(1) Since X_{m+1} is a linear combination of X_1, \cdots, X_{m}, so we have \big < X_1, \cdots, X_{m+1}\big > = \big < X_1, \cdots, X_{m} \big > \Rightarrow \dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_1, \cdots, X_{m} \big >
(2) Suppose X_{c_1}, \cdots, X_{c_r} is a basis of \big < X_1, \cdots, X_{m} \big >. Since X_{m+1} is not a linear combination of X_1, \cdots, X_{m}, so we have \big < X_1, \cdots, X_{m+1}\big > = \big < X_{c_1}, \cdots, X_{c_r}, X_{m+1} \big > \Rightarrow \dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_{c_1}, \cdots, X_{c_r}, X_{m+1} \big > = r+1 = \dim \big < X_1, \cdots, X_{m} \big > +1
(3) Since AX=B is consistent, we have B = x_1A_{*1}+\cdots+x_nA_{*n} where X=[x_1, \cdots, x_n]^{t}. So if AX=B is soluble then B is a linear combination of columns of A, that is B\in C(A). From part (1) we know that B\in C(A) if and only if \dim C(A|B) = \dim C(A) that is, \text{rank}\ [A|B] = \text{rank}\ A.
15. Let a_1, \cdots, a_n be elements of F, not all zero. Prove that the set of vectors [x_1, \cdots, x_n]^{t} where x_1, \cdots, x_n satisfy a_1x_1+\cdots+a_nx_n=0 is a subspace of F^{n} with dimension equal to n-1.
Solution:
Denote S be the set of vectors [x_1, \cdots, x_n]^{t}. Then S = N(A), where A is the row matrix [a_1, \cdots, a_n]. And rank A=1 since A\neq0. Thus we have \dim S=\dim N(A)=n-\text{rank}\ A=n-1
16. Prove the following theorems:
(1) Suppose each of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s. Then any linear combination of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s. That is, \big < X_1, \cdots, X_r\big > \subseteq\big < Y_1, \cdots, Y_s\big > .
(2) Subspaces \big < X_1, \cdots, X_r\big > and \big < Y_1, \cdots, Y_s\big > are equal if each of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s and each of Y_1, \cdots, Y_s is a linear combination of X_1, \cdots, X_r.
(3) \big < X_1,\cdots, X_r, Z_1, \cdots, Z_t\big > and \big < X_1,\cdots, X_r\big > are equal if each of Z_1, \cdots, Z_t is a linear combination of X_1,\cdots, X_r.
(4) A family of s vectors in \big < X_1, \cdots, X_r\big > will be linearly dependent if s > r. Equivalently, a linearly independent family of s vectors in \big < X_1, \cdots, X_r\big > must have s \leq r.
Solution:
(1) Since each of X_1, \cdots, X_r is a linear combination of Y_1, \cdots, Y_s, so we have \begin{cases}X_1=a_{11}Y_1+\cdots+a_{1s}Y_s\\ \vdots\\ X_r=a_{r1}Y_1+\cdots+a_{rs}Y_s\end{cases} Now let X is a linear combination of X_1, \cdots, X_r, that is X=x_1X_1+\cdots+x_rX_r =x_1(a_{11}Y_1 + \cdots + a_{1s}Y_s) + \cdots +x_r(a_{r1}Y_1+\cdots+a_{rs}Y_s) =y_1Y_1 + \cdots + y_sY_s where y_i = \displaystyle\sum_{j=1}^{r}x_{j}a_{ji} for i = 1, \cdots, s. This shows that X is also a linear combination of Y_1, \cdots, Y_s.
(2) According to part (1), we know that \big < X_1, \cdots, X_r\big > \subseteq\big < Y_1, \cdots, Y_s\big > and \big < Y_1, \cdots, Y_s\big > \subseteq \big < X_1, \cdots, X_r\big > Thus \big < X_1, \cdots, X_r\big > = \big < Y_1, \cdots, Y_s\big > .
(3) Since each of Z_1, \cdots, Z_t is a linear combination of X_1,\cdots, X_r, so each of X_1,\cdots, X_r, Z_1, \cdots, Z_t is a linear combination of X_1,\cdots, X_r.
On the other hand, each of X_1,\cdots, X_r is a linear combination of X_1,\cdots, X_r, Z_1, \cdots, Z_t. According to part (2), we know that \big < X_1,\cdots, X_r, Z_1, \cdots, Z_t\big > = \big < X_1,\cdots, X_r\big >
(4) Suppose Y_1, \cdots, Y_s are vector in \big < X_1, \cdots, X_r\big > . We have \begin{cases}Y_1=a_{11}X_1+\cdots+a_{1r}X_r\\ \vdots\\ Y_s=a_{s1}X_1+\cdots+a_{sr}X_r\end{cases} Then assume we have coefficients y_1, \cdots, y_s, and y_1Y_1+\cdots+y_sY_s = y_1(a_{11}X_1+\cdots+a_{1r}X_r) + \cdots + y_s(a_{s1}X_1 + \cdots + a_{sr}X_r) =x_1X_1 + \cdots + x_rX_r where x_i = \displaystyle\sum_{j=1}^{s}y_{j}a_{ji} for i = 1, \cdots, r. That is, \begin{cases}a_{11}y_1+\cdots+a_{s1}y_s = x_1\\ \vdots \\ a_{1r}y_1+\cdots+a_{sr}y_s = x_r\end{cases} The homogeneous system x_i=0 for i = 1, \cdots, r, has non-trivial solutions (y_j for j =1, \cdots, s) if s > r, otherwise s \leq r.
That is, Y_1, \cdots, Y_s will be linearly dependent if s > r, otherwise it will be linearly independent.
17. Let R and S be subspaces of F^n, with R \subseteq S. Prove that \dim R\leq \dim S and that equality implies R=S.
Solution:
Suppose X_1, \cdots, X_r form a basis of R, and Y_1, \cdots, Y_s form a basis of S. Since R\subseteq S, so we have \big < Y_1, \cdots, Y_s\big > = \big < X_1, \cdots, X_r, Y_1, \cdots, Y_s\big > Applying left-to-right algorithm, we can form a basis on the right hand of the above equation, which is an extension of X_1, \cdots, X_r, say X_1, \cdots, X_r, \cdots, X_s. That is, \dim R = r \leq s = \dim S Obviously, from the above extension of bases, when r=s it will be R=S.
18. Let R and S be subspaces of F^{n}. If R\cup S is a subspace of F^{n}, prove that R\subseteq S or S\subseteq R.
Solution:
Suppose R\nsubseteq S and S\nsubseteq R, that is, there exists u and v such that u\in R but u\notin S, and v\in S but v\notin R. We have u, v \in R\cup S \Rightarrow u+v\in R\cup S \Rightarrow u+v\in R\ \text{or}\ u+v\in S Assume that u+v\in R, since u\in R, -u\in R (since R is a subspace and also a field which satisfying 10 properties in Chapter 1). So we have v=(u+v)+(-u)\in R\Rightarrow v\in R which is contradiction. Thus, we can conclude that R\subseteq S or S\subseteq R.
19. Let X_1, \cdots, X_r be a basis for a subspace S. Prove that all bases for S are given by the family Y_1, \cdots, Y_r, where Y_i=\sum_{j=1}^{r}a_{ij}X_j, and where A=[a_{ij}]\in M_{r\times r}(F) is a non-singular matrix.
Solution:
First, we will prove Y_i is a basis for S if A is non-singular matrix. Then we will prove A is non-singular matrix if Y_i is a basis for S.
(1) From the given condition, we have \begin{cases}Y_1 = a_{11}X_1 + \cdots + a_{1r}X_r\\ \vdots\\ Y_r=a_{r1}X_1+\cdots + a_{rr}X_r\end{cases} where A=[a_{ij}] is a non-singular matrix, B=[Y_1, \cdots, Y_r]^{t}, X=[X_1, \cdots, X_r]^{t}. Thus X=A^{-1}B, which means X is soluble in terms of Y. So by Problem 16 part (1) we have S =\big < X_1, \cdots, X_r \big > = \big < Y_1, \cdots, Y_r \big > And (by problem 11) hence Y_1, \cdots, Y_r is a basis for S.
(2) On the other hand, if A is non-singular, then the rows of A are linearly independent. That is, assuming x_1[a_{11}, \cdots, a_{1r}]+ \cdots+ x_r[a_{r1}, \cdots, a_{rr}] = [0, \cdots, 0] We need to prove that all x_i are zeros. So we have \begin{cases}a_{11}x_1+\cdots + a_{r1}x_r = 0 \\ \vdots \\ a_{1r}x_1+\cdots + a_{rr}x_r =0\end{cases} Hence x_1Y_1+\cdots+x_rY_r = x_1(a_{11}X_1 + \cdots + a_{1r}X_r) + \cdots + x_r(a_{r1}X_1+\cdots + a_{rr}X_r) = (a_{11}x_1+\cdots + a_{r1}x_r)X_1 + \cdots + ( a_{1r}x_1+\cdots + a_{rr}x_r)X_r =0\cdot X_1+\cdots+0\cdot X_r = 0 Since Y_i are linearly independent (i.e. basis), thus x_1 = \cdots = x_r =0. That is, the rows of A are linearly independent which implies A is non-singular matrix.
没有评论:
发表评论