Solution Manual of "Elementary Linear Algebra": 3. Subspaces

This document is the solution manual of “Elementary Linear Algebra” which was written by K. R. Matthews, University of Queensland.
The free printable PDF format lecture can be Downloaded Here


Summary
  • A subset $S$ of $F^{n}$ is called a subspace of $F^{n}$ if
    • $0\in S$;
    • If $u\in S$ and $v\in S$, then $u+v\in S$;
    • If $u\in S$ and $t\in F$, then $tu\in S$.
  • Let $X_1, \cdots, X_m\in F^{n}$. Then the set consisting of all linear combinations $x_1X_1+\cdots+x_mX_m$, where $x_1, \cdots, x_m\in F$, is a subspace of $F^{n}$. This subspace is called the subspace spanned or generated by $X_1, \cdots, X_m$ and is denoted by $\big < X_1, \cdots, X_m\big > $. We also call $X_1, \cdots, X_m$ a spanning family for $S=\big < X_1, \cdots, X_m\big > $.
  • Let $A\in M_{m\times n}(F)$. Then the set of vectors $X\in F^{n}$ satisfying $AX=0$ is a subspace of $F^{n}$ called the null space of $A$ and is denoted by $N(A)$.
  • If $A\in M_{m\times n}(F)$, the subspace generated by the columns of $A$ is the subspace of $F^{m}$ and is called the column space of $A$, $C(A)$. Similarly, the subspace generated by the rows of $A$ is the subspace of $F^{n}$ and is called the row space of $A$, $R(A)$.
  • Suppose each of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$. Then any linear combination of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$. That is, $\big < X_1, \cdots, X_r\big > \subseteq\big < Y_1, \cdots, Y_s\big > $.
  • Subspaces $\big < X_1, \cdots, X_r\big > $ and $\big < Y_1, \cdots, Y_s\big > $ are equal if each of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$ and each of $Y_1, \cdots, Y_s$ is a linear combination of $X_1, \cdots, X_r$.
  • $\big < X_1,\cdots, X_r, Z_1, \cdots, Z_t\big > $ and $\big < X_1,\cdots, X_r\big > $ are equal if each of $Z_1, \cdots, Z_t$ is a linear combination of $X_1,\cdots, X_r$.
  • If $A$ is row equivalent to $B$, then $R(A)=R(B)$. (Note that it is not always true that $C(A)=C(B)$)
  • Linearly dependent and linear independent
    Vectors $X_1, \cdots, X_m$ in $F^{n}$ are said to be linearly dependent if there exist scalars $x_1, \cdots, x_m$, not all zero, such that $$x_1X_1+\cdots +x_mX_m=0.$$ $X_1, \cdots, X_m$ are called linearly independent if they are not linearly dependent. Hence $X_1, \cdots, X_m$ are linearly independent if and only if the equation $$x_1X_1+\cdots +x_mX_m=0$$ has only the trivial solution $x_1=0,\cdots, x_m=0$.
  • A family of $m$ vectors in $F^{n}$ will be linearly dependent if $m > n$. Equivalently, any linearly independent family of $m$ vectors in $F^{n}$ must satisfy $m \leq n$.
  • A family of $s$ vectors in $\big < X_1, \cdots, X_r\big > $ will be linearly dependent if $s > r$. Equivalently, a linearly independent family of $s$ vectors in $\big < X_1, \cdots, X_r\big > $ must have $s \leq r$.
  • Left-to-right test
    Vectors $X_1, \cdots, X_m$ in $F^{n}$ are linearly independent if
    • $X_1 \neq 0$;
    • For each $k$ with $1 < k \leq m$, $X_k$ is not a linear combination of $X_1, \cdots, X_{k-1}$.
  • Every subspace $S$ of $F^{n}$ can be represented in the form $S=\big < X_1\cdots X_m\big > $, where $m \leq n$.
  • Suppose that $A$ is row equivalent to $B$ and let $c_1, \cdots, c_r$ be distinct integers satisfying $1 \leq c_i \leq n$. Then
    • Columns $A_{* c_1}, \cdots, A_{* c_r}$ of $A$ are linearly dependent if and only if the corresponding columns of $B$ are linearly dependent; indeed more is true: $$x_1A_{*c_1}+\cdots + x_rA_{*c_r}=0\Leftrightarrow x_1B_{*c_1}+\cdots + x_rB_{*c_r}=0$$
    • Columns $A_{* c_1}, \cdots, A_{* c_r}$ of $A$ are linearly independent if and only if the corresponding columns of $B$ are linearly independent.
    • If $1 \leq c_{r+1} \leq n$ and $c_{r+1}$ is distinct from $c_1, \cdots, c_r$, then $$A_{*c_{r+1}}= z_1A_{*c_{1}}+ \cdots + z_rA_{*c_{r}}\Leftrightarrow B_{*c_{r+1}}= z_1B_{*c_{1}}+ \cdots + z_rB_{*c_{r}}$$
  • Basis
    Vectors $X_1, \cdots, X_m$ belonging to a subspace $S$ are said to form a basis of $S$ if
    • Every vector in $S$ is a linear combination of $X_1, \cdots, X_m$;
    • $X_1, \cdots, X_m$ are linearly independent.
  • A subspace of the form $\big < X_1, \cdots, X_m\big > $, where at least one of $X_1, \cdots, X_m$ is non-zero, has a basis $X_{c_1}, \cdots, X_{c_r}$, where $1 \leq c_1 < \cdots < c_r \leq m$.
  • Left-to-right algorithm
    • A subspace of the form $\big < X_1, \cdots, X_m\big > $. Let $c_1$ be the least index $k$ for which $X_k$ is non-zero. If $c_1=m$ or if all the vectors $X_k$ with $k > c_1$ are linear combinations of $X_{c_1}$, terminate the algorithm and let $r = 1$. Otherwise let $c_2$ be the least integer $k > c_1$ such that $X_k$ is not a linear combination of $X_{c_1}$.
    • If $c_2=m$ or if all the vectors $X_k$ with $k > c_2$ are linear combinations of $X_{c_1}$ and $X_{c_2}$, terminate the algorithm and let $r = 2$. Eventually the algorithm will terminate at the $r$th stage, either because $c_r=m$, or because all vectors $X_k$ with $k > c_r$ are linear combinations of $X_{c_1}, \cdots, X_{c_r}$.
    • $X_{c_1}, \cdots, X_{c_r}$ is called the left-to-right basis for the subspace $\big < X_1, \cdots, X_m\big > $. For example, $2X, -Y$ is the left-to-right basis of $\big < 0, 2X, X, -Y, X+Y\big > $
  • Dimension
    Any two bases for a subspace $S$ must contain the same number of elements. This number is called the dimension of $S$ and is written $\dim S$. Naturally we define $\dim{0} = 0$.
  • A linearly independent family of $m$ vectors in a subspace $S$, with $\dim S=m$, must be a basis for $S$.
  • Rank and nullity
    • column rank $A = \dim C(A)$;
    • row rank $A = \dim R(A)$;
    • nullity $A= \dim N(A)$.
  • Let $A\in M_{m\times n}(F)$. Then
    • column rank $A =$ row rank $A$;
    • column rank $A +$ nullity $A = n$.
  • The common value if column rank $A$ and row rank $A$ is called the rank of $A$.
  • Every linearly independent family of vectors in a subspace $S$ can be extended to a basis of $S$.

Problems 3.6

1. Which of the following subsets of $\mathbb{R}^2$ are subspaces? (a) $[x, y]$ satisfying $x=2y$; (b) $[x, y]$ satisfying $x=2y$ and $2x=y$; (c) $[x, y]$ satisfying $x=2y+1$; (d) $[x, y]$ satisfying $xy=0$; (e) $[x, y]$ satisfying $x \geq 0$ and $y \geq 0$.  

Solution:
(a) (1) $[0, 0]\in S$; (2) Suppose $[x_1, y_1]\in S$ and $[x_2, y_2]\in S$, so $x_1+x_2 = 2y_1+2y_2=2(y_1+y_2)$, that is $[x_1+x_2, y_1+y_2] = [x_1, y_1] + [x_2, y_2]\in S$; (3) Suppose $t\in R$, so $tx = t\cdot2y=2(ty)$, that is $[tx, ty]=t[x, y]\in S$. Hence this is subspace. (b) We have $x = 2y=4x\Rightarrow x=y=0$. That is, $S=\{[0, 0]\}$ which is consisting of zero vector, and it is always subspace. (c) $[0, 0]\notin S$ hence it is not subspace. (d) $xy=0\Rightarrow x=0$ or $y=0$. But it is not closed under addition, for example, $[0, 1] + [1, 0]=[1, 1]\notin S$. Hence it is not subspace. (e) This is not closed under scalar multiplication. For example, $[1, 0] \in S$ and $t=-1\in R$, but $t[1, 0]=[-1, 0]\notin S$. Hence it is not subspace.

2. If $X$, $Y$, $Z$ are vectors in $\mathbb{R}^n$, prove that $$\big < X, Y, Z\big > = \big < X+Y, X+Z, Y+Z \big > $$
Solution:
First, each of $X+Y$, $X+Z$, $Y+Z$ is a linear combination of $X$, $Y$, $Z$. So $$\big < X+Y, X+Z, Y+Z \big > \subseteq \big < X, Y, Z\big > $$ On the other hand, $$\begin{cases}X={1\over2}(X+Y) + {1\over2}(X+Z) - {1\over2}(Y+Z)\\ Y={1\over2}(X+Y) - {1\over2}(X+Z) + {1\over2}(Y+Z)\\ Z=-{1\over2}(X+Y) + {1\over2}(X+Z) + {1\over2}(Y+Z) \end{cases}$$ That is, each of $X$, $Y$, $Z$ is a linear combination of $X+Y$, $X+Z$, $Y+Z$, so $$\big < X, Y, Z\big > \subseteq \big < X+Y, X+Z, Y+Z \big > $$ Thus, $\big < X, Y, Z\big > = \big < X+Y, X+Z, Y+Z \big > $.

3. Determine if $X_1 = \begin{bmatrix}1\\0\\ 1\\ 2 \end{bmatrix}$, $X_2 = \begin{bmatrix}0\\1\\ 1\\ 2 \end{bmatrix}$, and $X_3 = \begin{bmatrix}1\\ 1\\ 1\\ 3 \end{bmatrix}$ are linearly independent in $\mathbb{R}^4$.

Solution:
Suppose we have $xX_1+yX_2+zX_3=0$, that is $$\begin{cases}x + z=0\\ y+z =0\\ x+y+z = 0\\ 2x+2y+3z = 0 \end{cases} \Rightarrow x=y=z=0$$ Thus they are linearly independent.

4. For which real number $\lambda$ are the following vectors linearly independent in $\mathbb{R}^3$? $$X_1=\begin{bmatrix}\lambda\\ -1\\ -1 \end{bmatrix}, X_2=\begin{bmatrix}-1\\ \lambda\\ -1 \end{bmatrix}, X_3=\begin{bmatrix}-1\\ -1\\ \lambda \end{bmatrix}.$$
Solution:
Suppose there exists $x$, $y$, $z$ satisfying $xX_1+yX_2+zX_3= 0$. That is $$\begin{cases}\lambda x -y -z=0\\ -x + \lambda y-z =0\\ -x -y +\lambda z = 0\end{cases}$$ $$\Rightarrow \begin{bmatrix}\lambda & -1& -1\\ -1& \lambda& -1\\ -1& -1& \lambda \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_1 + \lambda R_3\\ R_2-R_3\\ -R_3 \end{cases}\begin{bmatrix}0 & -\lambda-1& \lambda^2-1\\ 0& \lambda+1& -1-\lambda\\ 1& 1 & -\lambda \end{bmatrix}$$ If $\lambda = -1$, then $$\begin{bmatrix}0 & 0& 0\\ 0& 0& 0\\ 1& 1 & 1 \end{bmatrix}\Rightarrow x = -y-z$$ which means there are non-trivial solutions. Thus $\lambda \neq -1$. We have $$\begin{bmatrix}0 & -\lambda-1& \lambda^2-1\\ 0& \lambda+1& -1-\lambda\\ 1& 1 & -\lambda \end{bmatrix}$$ $$\Rightarrow\begin{cases}{1\over\lambda+1} R_1\\ {1\over\lambda+1} R_2 \end{cases} \begin{bmatrix}0 & -1& \lambda-1\\ 0& 1& -1\\ 1& 1 & -\lambda \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_1 + R_2\\ R_3-R_2 \end{cases} \begin{bmatrix}0 & 0& \lambda-2\\ 0& 1& -1\\ 1& 0 & -\lambda+1 \end{bmatrix}$$ If $\lambda = 2$, then $$\begin{bmatrix}0 & 0& 0\\ 0& 1& -1\\ 1& 0 & -1 \end{bmatrix} \Rightarrow \begin{cases}x = z\\ y = z \end{cases}$$ which means there are non-trivial solutions. Thus $\lambda \neq 2$. Hence we have $$\begin{bmatrix}0 & 0& \lambda-2\\ 0& 1& -1\\ 1& 0 & -\lambda+1 \end{bmatrix} \Rightarrow {1\over\lambda-2}R_1 \begin{bmatrix}0 & 0& 1\\ 0& 1& -1\\ 1& 0 & -\lambda+1 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2+R_1\\ R_3+(\lambda-1)R_1 \end{cases} \begin{bmatrix}0 & 0& 1\\ 0& 1& 0\\ 1& 0 & 0 \end{bmatrix} \Rightarrow x= y= z = 0$$ Therefore, it is linearly independent when $\lambda\neq -1, 2$.

5. Find bases for the row, column and null spaces of the following matrix over $\mathbb{Q}$: $$A=\begin{bmatrix}1& 1& 2& 0& 1\\ 2& 2& 5& 0& 3\\ 0& 0& 0& 1& 3\\ 8& 11& 19& 0& 11 \end{bmatrix}$$
Solution:
$$A=\begin{bmatrix}1& 1& 2& 0& 1\\ 2& 2& 5& 0& 3\\ 0& 0& 0& 1& 3\\ 8& 11& 19& 0& 11 \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_2- 2R_1\\ R_4-8R_1\end{cases} \begin{bmatrix}1& 1& 2& 0& 1\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 3& 3& 0& 3 \end{bmatrix}$$ $$\Rightarrow{1\over3} R_4 \begin{bmatrix}1& 1& 2& 0& 1\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 1& 1& 0& 1 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_1-R_4\\ R_4-R_2\end{cases} \begin{bmatrix}1& 0& 1& 0& 0\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 1& 0& 0& 0 \end{bmatrix}$$ $$\Rightarrow R_1-R_2 \begin{bmatrix}1& 0& 0& 0& -1\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3\\ 0& 1& 0& 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix}1& 0& 0& 0& -1\\ 0& 1& 0& 0& 0\\ 0& 0& 1& 0& 1\\ 0& 0& 0& 1& 3 \end{bmatrix} = B$$ Thus, the bases of $R(A)$ and $C(A)$ are: $$\begin{cases}R(A): & [1, 0, 0, 0, -1], [0, 1, 0, 0, 0], [0, 0, 1, 0, 1], [0, 0, 0, 1, 3]\\ C(A): & [1, 2, 0, 8]^{t}, [1, 2, 0, 11]^{t}, [2, 5, 0, 19]^{t}, [0, 0, 1, 0]^{t}\\ \end{cases}$$ For $N(A)$, we have $AX=0$ where $A=[x_1, x_2, x_3, x_4, x_5]^{t}$, that is $$\begin{cases}x_1=x_5\\ x_2=0\\x_3=-x_5\\ x_4=-3x_5 \end{cases}\Rightarrow X=\begin{bmatrix}x_5\\ 0\\ -x_5\\ -3x_5\\ x_5 \end{bmatrix} = x_5\begin{bmatrix}1\\ 0\\ -1\\ -3\\ 1 \end{bmatrix}$$ Hence the basis of $N(A)$ is $[1, 0, -1, -3, 1]^{t}$.

6. Find bases for the row, column and null spaces of the following matrix over $\mathbb{Z}_2$: $$A=\begin{bmatrix}1& 0& 1& 0& 1\\ 0& 1& 0& 1& 1\\ 1& 1& 1& 1& 0\\ 0& 0& 1& 1& 0 \end{bmatrix}$$
Solution:
Recall that $1 + 1 = 0 \Rightarrow -1=1$ in $\mathbb{Z}_2$ field.
$$A=\begin{bmatrix}1& 0& 1& 0& 1\\ 0& 1& 0& 1& 1\\ 1& 1& 1& 1& 0\\ 0& 0& 1& 1& 0 \end{bmatrix}$$ $$\Rightarrow R_3-R_1 \begin{bmatrix}1& 0& 1& 0& 1\\ 0& 1& 0& 1& 1\\ 0& 1& 0& 1& 1\\ 0& 0& 1& 1& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3-R_2\\ R_1-R_4\end{cases} \begin{bmatrix}1& 0& 0& 1& 1\\ 0& 1& 0& 1& 1\\ 0& 0& 0& 0& 0\\ 0& 0& 1& 1& 0 \end{bmatrix}$$ $$\Rightarrow R_3\leftrightarrow R_4\begin{bmatrix}1& 0& 0& 1& 1\\ 0& 1& 0& 1& 1\\ 0& 0& 1& 1& 0 \\ 0& 0& 0& 0& 0 \end{bmatrix}$$ The bases of $R(A)$ and $C(A)$ are: $$\begin{cases}R(A): & [1, 0, 0, 1, 1], [0, 1, 0, 1, 1], [0, 0, 1, 1, 0]\\ C(A): & [1, 0, 1, 0]^{t}, [0, 1, 1, 0]^{t}, [1, 0, 1, 1]^{t}\end{cases}$$ For $N(A)$ we have $$\begin{cases}x_1=-x_4-x_5=x_4+x_5\\ x_2=-x_4-x_5=x_4+x_5\\ x_3= -x_4=x_4\\ x_4=x_4\\x_5=x_5 \end{cases}\Rightarrow X=x_4\begin{bmatrix}1\\ 1\\ 1\\ 1\\ 0 \end{bmatrix} + x_5\begin{bmatrix}1\\ 1\\ 0\\ 0\\ 1 \end{bmatrix}$$ Hence the basis of $N(A)$ is $[1, 1, 1, 1, 0]^{t}, [1, 1, 0, 0, 1]^{t}$.

7. Find bases for the row, column and null spaces of the following matrix over $\mathbb{Z}_5$: $$A=\begin{bmatrix}1& 1& 2& 0& 1 & 3\\ 2& 1& 4& 0& 3 & 2\\ 0& 0& 0& 1& 3 &0\\ 3& 0& 2& 4& 3 & 2 \end{bmatrix}$$
Solution:
Recall that for $x \notin \{0, 1, 2, 3, 4\}$ we have $\begin{cases}x - 5n & x > 0\\ 5n - x & x < 0 \end{cases}$, for example, $8 = 8 - 5 = 3$, $-8 = 10 - 8 = 2$. $$A=\begin{bmatrix}1& 1& 2& 0& 1 & 3\\ 2& 1& 4& 0& 3 & 2\\ 0& 0& 0& 1& 3 &0\\ 3& 0& 2& 4& 3 & 2 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-2R_1\\ R_4-3R_1 \end{cases} \begin{bmatrix}1& 1& 2& 0& 1 & 3\\ 0& 4& 0& 0& 1 & 1\\ 0& 0& 0& 1& 3 &0\\ 0& 2& 1& 4& 0 & 3 \end{bmatrix}$$ $$\Rightarrow\begin{cases}2R_1-R_4\\ R_2-2R_4 \end{cases} \begin{bmatrix}2& 0& 3& 1& 2 & 3\\ 0& 0& 3& 2& 1 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 2& 1& 4& 0 & 3 \end{bmatrix}$$ $$\Rightarrow \begin{cases} R_1-R_2\\ 3R_4-R_2\end{cases} \begin{bmatrix}2& 0& 0& 4& 1 & 3\\ 0& 0& 3& 2& 1 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 1& 0& 0& 4 & 4 \end{bmatrix}$$ $$\Rightarrow \begin{cases} R_1-4R_3\\ R_2-2R_3\end{cases} \begin{bmatrix}2& 0& 0& 0& 4 & 3\\ 0& 0& 3& 0& 0 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 1& 0& 0& 4 & 4 \end{bmatrix} = \begin{bmatrix}2& 0& 0& 0& 4 & 8\\ 0& 0& 3& 0& 0 & 0\\ 0& 0& 0& 1& 3 &0\\ 0& 1& 0& 0& 4 & 4 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix}1& 0& 0& 0& 2 & 4\\ 0& 1& 0& 0& 4 & 4\\ 0& 0& 1& 0& 0 & 0\\ 0& 0& 0& 1& 3 &0\end{bmatrix}$$ Thus the bases of $R(A)$ and $C(A)$ are: $$\begin{cases}R(A):& [1, 0, 0, 0, 2, 4], [0, 1, 0, 0, 4, 4], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 3, 0] \\ C(A): & [1, 2, 0, 3]^{t}, [1, 1, 0, 0]^{t}, [2, 4, 0, 2]^{t}, [0, 0, 1, 4]^{t}\end{cases}$$ For $N(A)$, we have $$\begin{cases}x_1=-2x_5-4x_6=3x_5+x_6\\ x_2 = -4x_5 - 4x_6= x_5+x_6\\ x_3=0\\ x_4 = -3x_5=2x_5\\ x_5 = x_5\\ x_6 = x_6 \end{cases}\Rightarrow X=x_5\begin{bmatrix}3\\1\\0\\2\\1\\0 \end{bmatrix} + x_6 \begin{bmatrix}1\\1\\0\\0\\0\\1 \end{bmatrix}$$ Hence the basis of $N(A)$ is $[3, 1, 0, 2, 1, 0]^{t}, [1, 1, 0, 0, 0, 1]^{t}$.

8. Find bases for the row, column and null spaces of the matrix $A$ defined in section 1.6, Problem 17.

Solution:
Recall that in section 1.6 Problem 17 we have the following result:
$$A=\begin{bmatrix}1& a& b& a\\ a& b& b& 1\\ 1& 1& 1& a \end{bmatrix}$$ $$\Longleftrightarrow B=\begin{bmatrix}1& 0& 0& 0\\ 0& 1& 0& b\\0& 0& 1& 1 \end{bmatrix}$$ And the addition and multiplication tables are in the following table.


Thus the bases of $R(A)$ and $C(A)$ are $$\begin{cases}R(A): &[1, 0, 0, 0], [0, 1, 0, b], [0, 0, 1, 1] \\ C(A): & [1, a, 1]^{t}, [a, b, 1]^{t}, [b, b, 1]^{t} \end{cases}$$ For $N(A)$ we have $$\begin{cases}x_1=0\\ x_2 = -bx_4 = bx_4\\ x_3 = -x_4=x_4\\ x_4=x_4 \end{cases} \Rightarrow X=x_4\begin{bmatrix}0\\ b\\1\\1 \end{bmatrix}$$ Hence the basis of $N(A)$ is $[0, b, 1, 1]^{t}$.

9. If $X_1, \cdots, X_m$ form a basis for a subspace $S$, prove that $$X_1, X_1+X_2, \cdots, X_1+\cdots+X_m$$ also form a basis of $S$.

Solution:
There are two phases, firstly prove linearly independent and then prove every vector in $S$ is expressible by the basis.\\
Suppose that there exists $x_1, \cdots, x_m$ such that $$x_1X_1+x_2(X_1+X_2)+\cdots+x_m(X_1+\cdots+X_m)=0$$ $$\Rightarrow (x_1+x_2+\cdots+x_m)X_1+(x_2+\cdots+x_m)X_2+\cdots+x_mX_m = 0$$ Since $X_1, \cdots, X_m$ is linearly independent, so $$\begin{cases}x_1+x_2+\cdots+x_m = 0\\ x_2+\cdots+x_m =0\\ \vdots\\ x_m=0 \end{cases} \Rightarrow \begin{cases}x_1=0\\ x_2=0\\ \vdots\\ x_m=0\end{cases}$$ which indicates that $X_1, X_1+X_2, \cdots, X_1+\cdots+X_m$ are linearly independent. \\
Next, since $X_1, \cdots, X_m$ is a basis of $S$, thus suppose a vector $X\in S$ and we have $$X = a_1X_1+\cdots+a_mX_m = x_1X_1+x_2(X_1+X_2)+\cdots+x_m(X_1+\cdots+X_m)$$ $$= (x_1+x_2+\cdots+x_m)X_1+(x_2+\cdots+x_m)X_2+\cdots+x_mX_m$$ $$\Rightarrow \begin{cases}a_1 = x_1+x_2+\cdots+x_m\\ a_2 = x_2+\cdots+x_m\\ \vdots\\ a_m = x_m \end{cases} \Rightarrow \begin{cases}x_1=a_1-a_2\\ x_2=a_2-a_3\\ \vdots\\ x_m=a_m\end{cases}$$ which means an arbitrary vector $X\in S$ can be expressed by $X_1, X_1+X_2, \cdots, X_1+\cdots+X_m$.

10. Let $A=\begin{bmatrix}a&b&c\\1&1&1\end{bmatrix}$. Classify $a$, $b$, $c$ such that (a) rank $A = 1$; (b) rank $A = 2$.

Solution:
(a) $$\begin{bmatrix}a&b&c\\1&1&1\end{bmatrix}\Rightarrow \begin{bmatrix}0&b-a&c-a\\1&1&1\end{bmatrix}$$ Thus when $b-a=c-a=0\Rightarrow a=b=c$ then rank $A=1$.
(b) Similarly to (a), $b-a \neq 0$ or $c-a\neq 0$, that is, at least two of $a$, $b$, $c$ are distinct then rank $A=2$.

11. Let $S$ be a subspace of $F^n$ with $\dim S=m$. If $X_1, \cdots, X_m$ are vectors in $S$ with the property that $S=\big < X_1, \cdots, X_m\big > $, prove that $X_1, \cdots, X_m$ form a basis for $S$.

Solution:
Consider Problem 9, we only need to prove the dependency of $X_1, \cdots, X_m$ since $S=\big < X_1, \cdots, X_m\big > $ has been given. \\
Without loss of generality, suppose $X_1, \cdots, X_m$ are linear dependent and hence one of the vectors can be expressed by others: $$X_m= x_1X_1+\cdots+x_{m-1}X_{m-1}$$ where $x_i$ are not all zero for $i=1, \cdots, m-1$. This equation indicates that $S$ can be spanned by $m-1$ vectors, say $X_1, \cdots, X_{m-1}$. This is contradict to $S=\big < X_1, \cdots, X_m\big > $.

12. Find a basis for the subspace $S$ of $\mathbb{R}^3$ defined by the equation $$x + 2y + 3z =0$$ Verify that $Y_1=[-1, -1, 1]^{t}\in S$ and find a basis for $S$ which includes $Y_1$.

Solution:
First, $(-1)+2(-1)+3=0\Rightarrow Y_1\in S$. Then, we have
$$x + 2y + 3z =0\Rightarrow x=-2y-3z\Rightarrow \begin{bmatrix}x\\y\\z\end{bmatrix} = y\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} + z\begin{bmatrix}-3\\ 0\\ 1 \end{bmatrix}$$ Hence $[-2, 1, 0]^{t}$ and $[-3, 0, 1]^{t}$ form a basis for $S$.

13. Let $X_1, \cdots, X_m$ be vectors in $F^n$. If $X_i = X_j$, where $i < j$, prove that $X_1, \cdots, X_m$ are linearly dependent.  

Solution:
Without loss of generality, suppose $X_1 = X_2$, then we have $$1\cdot X_1+(-1)\cdot X_2+0\cdot X_3+\cdots + 0\cdot X_m=0$$ which means $X_1, \cdots, X_m$ are linearly dependent.

14. Let $X_1, \cdots, X_{m+1}$ be vectors in $F^n$. Prove that $$\dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_1, \cdots, X_{m} \big > $$ if $X_{m+1}$ is a linear combination of $X_1, \cdots, X_{m}$, but $$\dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_1, \cdots, X_{m} \big > +1$$ if $X_{m+1}$ is not a linear combination of $X_1, \cdots, X_{m}$.
Deduce that the system of linear equations $AX=B$ is consistent, if and only if $$\text{rank}\ [A|B] = \text{rank}\ A.$$
Solution:
(1) Since $X_{m+1}$ is a linear combination of $X_1, \cdots, X_{m}$, so we have $$\big < X_1, \cdots, X_{m+1}\big > = \big < X_1, \cdots, X_{m} \big > $$ $$\Rightarrow \dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_1, \cdots, X_{m} \big > $$
(2) Suppose $X_{c_1}, \cdots, X_{c_r}$ is a basis of $\big < X_1, \cdots, X_{m} \big >$. Since $X_{m+1}$ is not a linear combination of $X_1, \cdots, X_{m}$, so we have $$\big < X_1, \cdots, X_{m+1}\big > = \big < X_{c_1}, \cdots, X_{c_r}, X_{m+1} \big >$$ $$\Rightarrow \dim \big < X_1, \cdots, X_{m+1}\big > = \dim \big < X_{c_1}, \cdots, X_{c_r}, X_{m+1} \big >$$ $$= r+1 = \dim \big < X_1, \cdots, X_{m} \big > +1$$
(3) Since $AX=B$ is consistent, we have $$B = x_1A_{*1}+\cdots+x_nA_{*n}$$ where $X=[x_1, \cdots, x_n]^{t}$. So if $AX=B$ is soluble then $B$ is a linear combination of columns of $A$, that is $B\in C(A)$. From part (1) we know that $B\in C(A)$ if and only if $$\dim C(A|B) = \dim C(A)$$ that is, $\text{rank}\ [A|B] = \text{rank}\ A$.

15. Let $a_1, \cdots, a_n$ be elements of $F$, not all zero. Prove that the set of vectors $[x_1, \cdots, x_n]^{t}$ where $x_1, \cdots, x_n$ satisfy $$a_1x_1+\cdots+a_nx_n=0$$ is a subspace of $F^{n}$ with dimension equal to $n-1$.

Solution:
Denote $S$ be the set of vectors $[x_1, \cdots, x_n]^{t}$. Then $S = N(A)$, where $A$ is the row matrix $[a_1, \cdots, a_n]$. And rank $A=1$ since $A\neq0$. Thus we have $$\dim S=\dim N(A)=n-\text{rank}\ A=n-1$$

16. Prove the following theorems:
(1) Suppose each of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$. Then any linear combination of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$. That is, $\big < X_1, \cdots, X_r\big > \subseteq\big < Y_1, \cdots, Y_s\big > $.
(2) Subspaces $\big < X_1, \cdots, X_r\big > $ and $\big < Y_1, \cdots, Y_s\big > $ are equal if each of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$ and each of $Y_1, \cdots, Y_s$ is a linear combination of $X_1, \cdots, X_r$.
(3) $\big < X_1,\cdots, X_r, Z_1, \cdots, Z_t\big > $ and $\big < X_1,\cdots, X_r\big > $ are equal if each of $Z_1, \cdots, Z_t$ is a linear combination of $X_1,\cdots, X_r$.
(4) A family of $s$ vectors in $\big < X_1, \cdots, X_r\big > $ will be linearly dependent if $s > r$. Equivalently, a linearly independent family of $s$ vectors in $\big < X_1, \cdots, X_r\big > $ must have $s \leq r$.

Solution:
(1) Since each of $X_1, \cdots, X_r$ is a linear combination of $Y_1, \cdots, Y_s$, so we have $$\begin{cases}X_1=a_{11}Y_1+\cdots+a_{1s}Y_s\\ \vdots\\ X_r=a_{r1}Y_1+\cdots+a_{rs}Y_s\end{cases}$$ Now let $X$ is a linear combination of $X_1, \cdots, X_r$, that is $$X=x_1X_1+\cdots+x_rX_r$$ $$=x_1(a_{11}Y_1 + \cdots + a_{1s}Y_s) + \cdots +x_r(a_{r1}Y_1+\cdots+a_{rs}Y_s)$$ $$=y_1Y_1 + \cdots + y_sY_s$$ where $y_i = \displaystyle\sum_{j=1}^{r}x_{j}a_{ji}$ for $i = 1, \cdots, s$. This shows that $X$ is also a linear combination of $Y_1, \cdots, Y_s$.

(2) According to part (1), we know that $$\big < X_1, \cdots, X_r\big > \subseteq\big < Y_1, \cdots, Y_s\big > $$ and $$\big < Y_1, \cdots, Y_s\big > \subseteq \big < X_1, \cdots, X_r\big > $$ Thus $\big < X_1, \cdots, X_r\big > = \big < Y_1, \cdots, Y_s\big > $.

(3) Since each of $Z_1, \cdots, Z_t$ is a linear combination of $X_1,\cdots, X_r$, so each of $X_1,\cdots, X_r, Z_1, \cdots, Z_t$ is a linear combination of $X_1,\cdots, X_r$.
On the other hand, each of $X_1,\cdots, X_r$ is a linear combination of $X_1,\cdots, X_r, Z_1, \cdots, Z_t$. According to part (2), we know that $$\big < X_1,\cdots, X_r, Z_1, \cdots, Z_t\big > = \big < X_1,\cdots, X_r\big > $$
(4) Suppose $Y_1, \cdots, Y_s$ are vector in $\big < X_1, \cdots, X_r\big > $. We have $$\begin{cases}Y_1=a_{11}X_1+\cdots+a_{1r}X_r\\ \vdots\\ Y_s=a_{s1}X_1+\cdots+a_{sr}X_r\end{cases}$$ Then assume we have coefficients $y_1, \cdots, y_s$, and $$y_1Y_1+\cdots+y_sY_s = y_1(a_{11}X_1+\cdots+a_{1r}X_r) + \cdots + y_s(a_{s1}X_1 + \cdots + a_{sr}X_r)$$ $$=x_1X_1 + \cdots + x_rX_r$$ where $x_i = \displaystyle\sum_{j=1}^{s}y_{j}a_{ji}$ for $i = 1, \cdots, r$. That is, $$\begin{cases}a_{11}y_1+\cdots+a_{s1}y_s = x_1\\ \vdots \\ a_{1r}y_1+\cdots+a_{sr}y_s = x_r\end{cases}$$ The homogeneous system $x_i=0$ for $i = 1, \cdots, r$, has non-trivial solutions ($y_j$ for $j =1, \cdots, s$) if $s > r$, otherwise $s \leq r$.
That is, $Y_1, \cdots, Y_s$ will be linearly dependent if $s > r$, otherwise it will be linearly independent.

17. Let $R$ and $S$ be subspaces of $F^n$, with $R \subseteq S$. Prove that $$\dim R\leq \dim S$$ and that equality implies $R=S$.

Solution:
Suppose $X_1, \cdots, X_r$ form a basis of $R$, and $Y_1, \cdots, Y_s$ form a basis of $S$. Since $R\subseteq S$, so we have $$\big < Y_1, \cdots, Y_s\big > = \big < X_1, \cdots, X_r, Y_1, \cdots, Y_s\big > $$ Applying left-to-right algorithm, we can form a basis on the right hand of the above equation, which is an extension of $X_1, \cdots, X_r$, say $X_1, \cdots, X_r, \cdots, X_s$. That is, $$\dim R = r \leq s = \dim S$$ Obviously, from the above extension of bases, when $r=s$ it will be $R=S$.

18. Let $R$ and $S$ be subspaces of $F^{n}$. If $R\cup S$ is a subspace of $F^{n}$, prove that $R\subseteq S$ or $S\subseteq R$.

Solution:
Suppose $R\nsubseteq S$ and $S\nsubseteq R$, that is, there exists $u$ and $v$ such that $u\in R$ but $u\notin S$, and $v\in S$ but $v\notin R$. We have $$u, v \in R\cup S \Rightarrow u+v\in R\cup S$$ $$\Rightarrow u+v\in R\ \text{or}\ u+v\in S$$ Assume that $u+v\in R$, since $u\in R$, $-u\in R$ (since $R$ is a subspace and also a field which satisfying 10 properties in Chapter 1). So we have $$v=(u+v)+(-u)\in R\Rightarrow v\in R$$ which is contradiction. Thus, we can conclude that $R\subseteq S$ or $S\subseteq R$.

19. Let $X_1, \cdots, X_r$ be a basis for a subspace $S$. Prove that all bases for $S$ are given by the family $Y_1, \cdots, Y_r$, where $$Y_i=\sum_{j=1}^{r}a_{ij}X_j,$$ and where $A=[a_{ij}]\in M_{r\times r}(F)$ is a non-singular matrix.

Solution:
First, we will prove $Y_i$ is a basis for $S$ if $A$ is non-singular matrix. Then we will prove $A$ is non-singular matrix if $Y_i$ is a basis for $S$.
(1) From the given condition, we have $$\begin{cases}Y_1 = a_{11}X_1 + \cdots + a_{1r}X_r\\ \vdots\\ Y_r=a_{r1}X_1+\cdots + a_{rr}X_r\end{cases}$$ where $A=[a_{ij}]$ is a non-singular matrix, $B=[Y_1, \cdots, Y_r]^{t}$, $X=[X_1, \cdots, X_r]^{t}$. Thus $X=A^{-1}B$, which means $X$ is soluble in terms of $Y$. So by Problem 16 part (1) we have $$S =\big < X_1, \cdots, X_r \big > = \big < Y_1, \cdots, Y_r \big > $$ And (by problem 11) hence $Y_1, \cdots, Y_r$ is a basis for $S$.
(2) On the other hand, if $A$ is non-singular, then the rows of $A$ are linearly independent. That is, assuming $$x_1[a_{11}, \cdots, a_{1r}]+ \cdots+ x_r[a_{r1}, \cdots, a_{rr}] = [0, \cdots, 0]$$ We need to prove that all $x_i$ are zeros. So we have $$\begin{cases}a_{11}x_1+\cdots + a_{r1}x_r = 0 \\ \vdots \\ a_{1r}x_1+\cdots + a_{rr}x_r =0\end{cases}$$ Hence $$x_1Y_1+\cdots+x_rY_r$$ $$ = x_1(a_{11}X_1 + \cdots + a_{1r}X_r) + \cdots + x_r(a_{r1}X_1+\cdots + a_{rr}X_r)$$ $$= (a_{11}x_1+\cdots + a_{r1}x_r)X_1 + \cdots + ( a_{1r}x_1+\cdots + a_{rr}x_r)X_r$$ $$=0\cdot X_1+\cdots+0\cdot X_r = 0$$ Since $Y_i$ are linearly independent (i.e. basis), thus $x_1 = \cdots = x_r =0$. That is, the rows of $A$ are linearly independent which implies $A$ is non-singular matrix.


没有评论:

发表评论