The free printable PDF format lecture can be Downloaded Here
Summary
- Matrix
A matrix over a field F is a rectangular array of elements from F. The symbol M_{m\times n}(F) denotes the collection of all m\times n matrices over F.
Matrices will usually be denoted by capital letters and the equation A=[a_{ij}] means that the element in the i-th row and j-th column of the matrix A equals a_{ij}. - Equality of matrices
Matrices A, B are said to be equal if A and B have the same size and corresponding elements are equal; i.e. A and B \in M_{m\times n}(F) and A=[a_{ij}], B=[b_{ij}], with a_{ij}=b_{ij} for 1\leq i\leq m, 1\leq j\leq n. - Addition (subtraction) of matrices
Let A=[a_{ij}] and B=[b_{ij}] be of the same size. Then A\pm B is the matrix obtained by adding (subtracting) corresponding elements of A and B; that is A\pm B=[a_{ij}]\pm[b_{ij}]=[a_{ij}\pm b_{ij}]. - Scalar multiple of a matrix
Let A=[a_{ij}] and t\in F (t is a scalar). Then tA is the matrix obtained by multiplying all elements of A by t; that is tA=t[a_{ij}]=[ta_{ij}]. - Additive inverse of a matrix
Let A=[a_{ij}]. Then -A is the matrix obtained by replacing the elements of A by their additive inverses; that is -A=-[a_{ij}]=[-a_{ij}]. - The zero matrix
For each m, n the matrix in M_{m\times n}(F), all of whose elements are zero, is called the zero matrix (of size m\times n) and is denoted by the symbol 0. - Matrix product
- Definition
Let A=[a_{ij}] be a matrix of size m\times n and B=[b_{jk}] be a matrix of size n\times p; that is the number of columns of A equals the number of rows of B. Then AB is the m\times p matrix C=[c_{ik}] whose (i, k)-th element is defined by the formula c_{ik}=\sum_{j=1}^{n}a_{ij}b_{jk}=a_{i1}b_{1k} +\cdots+a_{in}b_{nk}. - Basic laws
(AB)C=A(BC) t(AB)=(tA)B=A(tB) (A+B)C=AC+BC D(A+B)=DA+DB where the size of A, B, C, D should satisfy the definition of matrix product, and t is a scalar in the field F.
- Definition
- The identity matrix
The n\times n matrix I_n=[\delta_{ij}], defined by \delta_{ij}=1 if i=j, \delta_{ij}=0 if i\neq j, is called the n\times n identity matrix of order n. For example, I_2=\begin{bmatrix}1&0\\0&1 \end{bmatrix}.
If A is m\times n, then I_mA=A=AI_n. - k-th power of a matrix
If A is an n\times n matrix, A^k is defined recursively as follows: A_0=I_n, and A^{k+1}=A^kA for k\geq0. For example, A^1=A^0A=I_nA=A and A^2=A^1A=AA. - Mathematical Induction
If P_n denotes a mathematical statement for each n\geq1, satisfying
(1) P_1 is true,
(2) the truth of P_n implies that of P_{n+1} for each n\geq1,
then P_n is true for all n\geq1.
Problems 2.4
1. Let A, B, C, D be matrices defined by A=\begin{bmatrix}3 & 0\\ -1 & 2\\ 1 & 1\end{bmatrix}, \, B=\begin{bmatrix}1& 5& 2\\-1& 1& 0\\ -4& 1& 3 \end{bmatrix},\, C=\begin{bmatrix}-3& -1\\ 2& 1\\ 4& 3 \end{bmatrix}, \, D=\begin{bmatrix}4& -1\\ 2& 0 \end{bmatrix}. Which of the following matrices are defined? Compute those matrices which are defined. A+B,\ A+C,\ AB,\ BA,\ CD,\ DC,\ D^2.
Solution:
A+C=\begin{bmatrix}3-3& 0-1\\-1+2& 2+1\\ 1+4& 1+3 \end{bmatrix}=\begin{bmatrix}0& -1\\1& 3\\ 5& 4 \end{bmatrix}
BA=\begin{bmatrix}1\times3-5\times1+2\times1& 1\times0+5\times2+2\times1\\-1\times3-1\times1+0\times1& -1\times0+1\times2+0\times1\\ -4\times3-1\times1+3\times1&-4\times0+1\times2+3\times1 \end{bmatrix}=\begin{bmatrix}0 &12\\-4&2\\-10&5 \end{bmatrix} CD=\begin{bmatrix}-14 &3\\10& -2\\22& -4 \end{bmatrix} D^2=\begin{bmatrix}14& -4\\8& -2 \end{bmatrix}
2. Let A=\begin{bmatrix}-1& 0& 1\\ 0& 1& 1 \end{bmatrix}. Show that if B is a 3\times2 such that AB=I_2, then B=\begin{bmatrix}a& b\\ -a-1& 1-b\\a+1& b \end{bmatrix} for suitable numbers a and b. Use the associative law to show that (BA)^2B=B.
Solution:
Let B=\begin{bmatrix}a& b\\c& d\\e& f \end{bmatrix}, and we have AB=\begin{bmatrix}-1& 0& 1\\ 0& 1& 1 \end{bmatrix}\cdot\begin{bmatrix}a& b\\c& d\\e& f \end{bmatrix}=\begin{bmatrix}-a+e &-b+f\\c+e&d+f \end{bmatrix}=I_2=\begin{bmatrix}1& 0\\ 0& 1 \end{bmatrix} Thus \begin{cases}-a+e=1\\-b+f=0\\c+e=0\\d+f=1 \end{cases}\Rightarrow\begin{cases}c=-e=-(a+1)=-a-1\\ d=1-f=1-b\\e=a+1\\f=b \end{cases} That is B=\begin{bmatrix}a& b\\ -a-1& 1-b\\a+1& b \end{bmatrix} Next (BA)^2B=BA\cdot BA\cdot B=B\cdot(AB)\cdot(AB)=B\cdot I_2\cdot I_2=B\cdot I_2=B
3. If A=\begin{bmatrix}a& b\\c& d \end{bmatrix}, prove that A^2-(a+d)A+(ad-bc)I_2=0
Solution:
Since
A^2=\begin{bmatrix}a& b\\c& d \end{bmatrix}\cdot\begin{bmatrix}a& b\\c& d \end{bmatrix}=\begin{bmatrix}a^2+bc& ab+bd\\ac+cd& bc+d^2 \end{bmatrix} (a+d)\cdot A=\begin{bmatrix}a^2+ad& ab+bd\\ac+cd& ad+d^2 \end{bmatrix} (ad-bc)I_2=(ad-bc)\cdot\begin{bmatrix}1& 0\\ 0& 1 \end{bmatrix}=\begin{bmatrix}ad-bc& 0\\ 0& ad-bc \end{bmatrix} Thus A^2-(a+d)A+(ad-bc)I_2 =\begin{bmatrix}a^2+bc& ab+bd\\ac+cd& bc+d^2 \end{bmatrix}- \begin{bmatrix}a^2+ad& ab+bd\\ac+cd& ad+d^2 \end{bmatrix} +\begin{bmatrix}ad-bc& 0\\ 0& ad-bc \end{bmatrix} =\begin{bmatrix}0& 0\\0& 0 \end{bmatrix}=0
4. If A=\begin{bmatrix}4& -3\\ 1& 0 \end{bmatrix}, use the fact A^2=4A-3I_2 and the mathematical induction, to prove that A^n={3^n-1\over2}A+{3-3^n\over2}I_2,\ \text{if}\ n\geq1.
Solution:
Note that according to the previous problem we have a=4,\ b=-3,\ c=1,\ d=0 in this problem, and hence we have A^2-4A+3I_2=0 which provided by the condition. By using mathematical induction, we have P_1: A^1={3-1\over2}A+{3-3\over2}I_2=A is true; And suppose P_n: A^n={3^n-1\over2}A+{3-3^n\over2}I_2 is true, then we have P_{n+1}: A^{n+1}=A\cdot A^n={3^n-1\over2}A^2+{3-3^n\over2}AI_2 ={3^n-1\over2}\cdot(4A-3I_2)+{3-3^n\over2}A ={4\cdot3^n-4+3-3^n\over2}A- {3^{n+1}-3\over2}I_2 ={3^{n+1}-1\over2}A+{3-3^{n+1}\over2}I_2 which is true. Thus the original assumption P_n is true.
5. A sequence of numbers x_1,\ x_2,\ \cdots,\ x_n,\ \cdots satisfies the recurrence relation x_{n+1}=ax_n+bx_{n-1} for n\geq1, where a and b are constant. Prove that \begin{bmatrix}x_{n+1}\\ x_n \end{bmatrix}=A\begin{bmatrix}x_n\\ x_{n-1} \end{bmatrix}, where A=\begin{bmatrix}a& b\\1& 0 \end{bmatrix} and hence express \begin{bmatrix}x_{n+1}\\x_n \end{bmatrix} in terms of \begin{bmatrix}x_1\\x_0 \end{bmatrix}.
If a=4 and b=-3, use the previous question to find a formula for x_n in terms of x_1 and x_0.
Solution:
It is easy to see that A\begin{bmatrix}x_n\\ x_{n-1} \end{bmatrix}=\begin{bmatrix}a& b\\1& 0 \end{bmatrix}\cdot\begin{bmatrix}x_n\\ x_{n-1} \end{bmatrix}=\begin{bmatrix}ax_n+bx_{n-1}\\x_n \end{bmatrix}=\begin{bmatrix}x_{n+1}\\ x_n \end{bmatrix} By recurrence relation we have \begin{bmatrix}x_{n+1}\\ x_n \end{bmatrix}=A\begin{bmatrix}x_n\\ x_{n-1} \end{bmatrix}=A\cdot A\begin{bmatrix}x_{n-1}\\ x_{n-2} \end{bmatrix}=A^2\begin{bmatrix}x_{n-1}\\ x_{n-2} \end{bmatrix}=\cdots=A^n\begin{bmatrix}x_{1}\\ x_{0} \end{bmatrix} When a=4 and b=-3, A=\begin{bmatrix}4& -3\\1& 0 \end{bmatrix}, and according to the previous results we have \begin{bmatrix}x_{n+1}\\ x_n \end{bmatrix}=A^n\begin{bmatrix}x_{1}\\ x_{0} \end{bmatrix} =\left({3^n-1\over2}A+{3-3^n\over2}I_2\right)\cdot\begin{bmatrix}x_{1}\\ x_{0} \end{bmatrix} =\left({3^n-1\over2}\cdot\begin{bmatrix}4& -3\\1& 0 \end{bmatrix}+{3-3^n\over2}\cdot\begin{bmatrix}1& 0\\ 0& 1 \end{bmatrix}\right)\cdot\begin{bmatrix}x_{1}\\ x_{0} \end{bmatrix} =\begin{bmatrix}2\cdot(3^n-1)+{3-3^n\over2}&-{3\over2}\cdot (3^n-1)\\ {3^n-1\over2}&{3-3^n\over2}\end{bmatrix}\cdot\begin{bmatrix}x_{1}\\ x_{0} \end{bmatrix} Thus we only need to compute the entry of (2, 1) which is x_n: x_n={3^n-1\over2}x_1+{3-3^n\over2}x_0.
6. Let A=\begin{bmatrix}2a&-a^2\\1&0 \end{bmatrix}.
(a) Prove that A^n=\begin{bmatrix}(n+1)a^n&-na^{n+1}\\na^{n-1} & (1-n)a^n \end{bmatrix},\ \text{if}\ n\geq1.
(b) A sequence x_0,\ x_1,\ \cdots,\ x_n,\ \cdots satisfies x_{n+1}=2ax_n-a^2x_{n-1} for n\geq1. Use part (a) and the previous question to prove that x_n=na^{n-1}x_1+(1-n)a^nx_0 for n\geq1.
Solution:
(a) Using mathematical induction: P_1: A^1=\begin{bmatrix}(1+1)a&-a^2\\1&0 \end{bmatrix}=A is true; Suppose that P_n: A^n=\begin{bmatrix}(n+1)a^n&-na^{n+1}\\na^{n-1} & (1-n)a^n \end{bmatrix} is true, and we have P_{n+1}: A^{n+1}=A\cdot A^n=\begin{bmatrix}2a&-a^2\\1&0 \end{bmatrix}\cdot\begin{bmatrix}(n+1)a^n&-na^{n+1}\\na^{n-1} & (1-n)a^n \end{bmatrix} =\begin{bmatrix}(2n+2)a^{n+1}-na^{n+1}&-2na^{n+2}-(1-n)a^{n+2}\\(n+1)a^{n} & -na^{n+1} \end{bmatrix} =\begin{bmatrix}(n+2)a^{n+1}&-(n+1)a^{n+2}\\(n+1)a^{n} & -na^{n+1} \end{bmatrix} follows the form of A^{n}, and hence the original assumption P_n is true.
(b) Since x_{n+1}=2ax_n-a^2x_{n-1}, we have \begin{bmatrix}x_{n+1}\\x_n \end{bmatrix}=\begin{bmatrix}2a&-a^2\\1&0\end{bmatrix}\cdot\begin{bmatrix}x_n\\x_{n-1} \end{bmatrix} = A^{n}\cdot\begin{bmatrix}x_1\\x_0 \end{bmatrix} =\begin{bmatrix}(n+1)a^n&-na^{n+1}\\na^{n-1} & (1-n)a^n \end{bmatrix}\cdot\begin{bmatrix}x_1\\x_0 \end{bmatrix} Thus the entry of (2, 1) is x_n: x_n=na^{n-1}x_1+(1-n)a^nx_0.
7. Let A=\begin{bmatrix}a&b\\c&d \end{bmatrix} and suppose that \lambda_1 and \lambda_2 are the roots of the quadratic polynomial x^2-(a+d)x+(ad-bc). (\lambda_1 and \lambda_2 may be equal.)
Let k_n be defined by k_0=0, k_1=1 and for n\geq2 k_n=\sum_{i=1}^{n}\lambda_1^{n-i}\lambda_2^{i-1}. Prove that k_{n+1}=(\lambda_1+\lambda_2)k_n-\lambda_1\lambda_2k_{n-1}, if n\geq1. Also prove that k_n=\begin{cases}\displaystyle{(\lambda_1^{n}-\lambda_2^{n}) \over (\lambda_1-\lambda_2)}& \mbox{if} \lambda_1\neq\lambda_2,\\ n\lambda_1^{n-1} & \mbox{if} \lambda_1=\lambda_2.\end{cases} Use mathematical induction to prove that if n\geq1, A^n=k_nA-\lambda_1\lambda_2k_{n-1}I_2.
Solution:
First, we prove k_{n+1}=(\lambda_1+\lambda_2)k_n-\lambda_1\lambda_2k_{n-1}.
(\lambda_1+\lambda_2)k_n-\lambda_1\lambda_2k_{n-1} =(\lambda_1+\lambda_2(\lambda_1^{n-1}+\lambda_1^{n-2} \lambda_2 +\cdots+\lambda_1\lambda_2^{n-2}+\lambda_2^{n-1}) -\lambda_1\lambda_2(\lambda_1^{n-2}+\lambda_1^{n-3}\lambda_2 +\cdots+\lambda_1\lambda_2^{n-3}+\lambda_2^{n-2}) =(\lambda_1^{n}+\lambda_1^{n-1}\lambda_2+\cdots+\lambda_1^2 \lambda_2^{n-2}+\lambda_1\lambda_2^{n-1}) + (\lambda_1^{n-1}\lambda_2+\lambda_1^{n-2}\lambda_2^2+\cdots +\lambda_1\lambda_2^{n-1}+\lambda_2^{n}) -(\lambda_1^{n-1}\lambda_2+\lambda_1^{n-2}\lambda_2^2+\cdots +\lambda_1\lambda_2^{n-1}+\lambda_2^{n}) =\lambda_1^{n}+\lambda_1^{n-1}\lambda_2+\cdots+\lambda_1^2 \lambda_2^{n-2}+\lambda_1\lambda_2^{n-1} =\sum_{i=1}^{n}\lambda_1^{n+1-i}\lambda_2^{i-1}=k_{n+1}
Next, we prove k_n=\begin{cases}\displaystyle{(\lambda_1^{n}-\lambda_2^{n}) \over (\lambda_1-\lambda_2)}& \mbox{if}\ \lambda_1\neq\lambda_2,\\ n\lambda_1^{n-1} & \mbox{if}\ \lambda_1=\lambda_2.\end{cases}
- If \lambda_1=\lambda_2
k_n=\sum_{i=1}^{n}\lambda_1^{n-i}\lambda_1^{i-1}= \sum_{i=1}^{n}\lambda_1^{n-1} = n\cdot\lambda_1^{n-1} - If \lambda_1\neq\lambda_2
(\lambda_1-\lambda_2)k_n=(\lambda_1-\lambda_2)(\lambda_1^{n-1}+\lambda_1^{n-2} \lambda_2 +\cdots+\lambda_1\lambda_2^{n-2}+\lambda_2^{n-1}) = (\lambda_1^{n}+\lambda_1^{n-1}\lambda_2+\cdots+\lambda_1^2 \lambda_2^{n-2}+\lambda_1\lambda_2^{n-1}) - (\lambda_1^{n-1}\lambda_2+\lambda_1^{n-2}\lambda_2^2+\cdots +\lambda_1\lambda_2^{n-1}+\lambda_2^{n}) =\lambda_1^{n}-\lambda_2^{n} \Rightarrow k_n= {(\lambda_1^{n}-\lambda_2^{n}) \over (\lambda_1-\lambda_2)}
8. Use Question 7 to prove that if A=\begin{bmatrix}1&2\\2&1 \end{bmatrix}, then A^{n}={3^n\over2}\begin{bmatrix}1&1\\1&1 \end{bmatrix}+{(-1)^{n-1}\over2}\begin{bmatrix}-1&1\\1&-1 \end{bmatrix} if n\geq1.
Solution:
\lambda_1 and \lambda_2 are the roots of x^2-x-3=(x-3)(x+1) \Rightarrow \lambda_1=3,\ \lambda_2=1 Note that \lambda_1\neq\lambda_2 and use the formula from the previous problem we have k_n={3^n-(-1)^n\over3-(-1)}={3^n-(-1)^n\over4},\ k_{n-1}={3^{n-1}- (-1)^{n-1}\over4} Hence A^{n}=k_nA-\lambda_1\lambda_2k_{n-1}I_2 ={3^n-(-1)^n\over4}\cdot\begin{bmatrix}1&2\\2&1 \end{bmatrix} +3\cdot{3^{n-1}- (-1)^{n-1}\over4}\cdot\begin{bmatrix}1 & 0\\ 0 & 1 \end{bmatrix} ={3^n + (-1)^{n-1} \over4} \cdot \begin{bmatrix}1&2\\2&1 \end{bmatrix} +{3^{n} - 3\cdot(-1)^{n-1}\over4}\cdot\begin{bmatrix}1 & 0\\ 0 & 1 \end{bmatrix} =\begin{bmatrix}\displaystyle{3^n+(-1)^{n-1} +3^n -3\cdot(-1)^{n-1} \over 4} & \displaystyle{3^n+(-1)^{n-1} \over 2}\\ \displaystyle{3^n+(-1)^{n-1} \over 2} & \displaystyle{3^n+(-1)^{n-1} +3^n -3\cdot(-1)^{n-1} \over 4}\end{bmatrix} =\begin{bmatrix}\displaystyle{3^n\over 2} - {(-1)^{n-1}\over 2} & \displaystyle{3^n\over 2} + {(-1)^{n-1}\over 2}\\ \displaystyle{3^n\over 2} + {(-1)^{n-1}\over 2} & \displaystyle{3^n\over 2} - {(-1)^{n-1}\over 2}\end{bmatrix} = {3^n\over2} \begin{bmatrix}1&1\\1&1 \end{bmatrix} +{(-1)^{n-1}\over2} \begin{bmatrix}-1&1\\1&-1 \end{bmatrix}
9. The Fibonacci numbers are defined by the equations F_0=0, F_1=1 and F_{n+1}=F_n+F_{n-1} if n\geq1. Prove that F_n={1\over\sqrt{5}}\left(\left({1+\sqrt{5}\over2}\right)^n -\left({1-\sqrt{5}\over2}\right)^n\right)
Solution:
Since F_{n+1}=F_n+F_{n-1}, we have \begin{bmatrix}F_{n+1}\\ F_{n} \end{bmatrix}=\begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\cdot\begin{bmatrix}F_{n}\\ F_{n-1} \end{bmatrix}= A\cdot\begin{bmatrix}F_{n}\\ F_{n-1} \end{bmatrix} = A^{n}\cdot\begin{bmatrix}F_{1}\\ F_{0} \end{bmatrix} = A^{n}\cdot \begin{bmatrix}1 \\ 0 \end{bmatrix} where A = \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}. From problem 7, we know \lambda_1 and \lambda_2 are the roots of x^2-x-1\Rightarrow \lambda_1={1+\sqrt{5}\over2},\ \lambda_2={1-\sqrt{5}\over2}. And k_n={\lambda_1^n-\lambda_2^n\over\lambda_1-\lambda_2} = {\left({1+\sqrt{5}\over2}\right)^n-\left({1-\sqrt{5}\over2}\right)^n \over\sqrt{5}} \Rightarrow A^{n}=k_nA-\lambda_1\lambda_2k_{n-1}I_2=k_nA+k_{n-1}I_2 Hence \begin{bmatrix}F_{n+1}\\ F_{n} \end{bmatrix} = A^{n}\cdot \begin{bmatrix}1 \\ 0 \end{bmatrix} = (k_nA+k_{n-1}I_2)\cdot \begin{bmatrix}1 \\ 0 \end{bmatrix} = \begin{bmatrix}k_n+k_{n-1} & k_n\\k_n& k_{n-1}\end{bmatrix} \cdot \begin{bmatrix}1 \\ 0 \end{bmatrix}= \begin{bmatrix}k_n+k_{n-1}\\ k_n\end{bmatrix} That is, F_n=k_n = {1 \over\sqrt{5}}\cdot \left(\left({1+\sqrt{5}\over2}\right)^n - \left({1-\sqrt{5}\over2}\right)^n\right)
10. Let r > 1 be an integer. Let a and b be arbitrary positive integers. Sequences x_n and y_n of positive integers are defined in terms of a and b by the recurrence relations x_{n+1}=x_n+ry_n y_{n+1} = x_n + y_n, for n\geq0, where x_0=a and y_0=b.
Use Question 7 to prove that \lim_{n\to\infty}{x_n\over y_n}=\sqrt{r}
Solution:
\begin{bmatrix}x_{n+1}\\ y_{n+1} \end{bmatrix} = \begin{bmatrix}1 & r\\1 & 1 \end{bmatrix} \cdot \begin{bmatrix}x_{n}\\ y_{n} \end{bmatrix} = A\cdot \begin{bmatrix}x_{n}\\ y_{n} \end{bmatrix} = A^{n+1}\cdot \begin{bmatrix}x_{0}\\ y_{0} \end{bmatrix} = A^{n+1}\cdot \begin{bmatrix}a\\ b \end{bmatrix} where A = \begin{bmatrix}1 & r\\1 & 1 \end{bmatrix}.
\lambda_1 and \lambda_2 are the roots of x^2-2x+(1-r), hence \lambda_1=1+\sqrt{r},\ \lambda_2 = 1-\sqrt{r}\Rightarrow k_n={\lambda_1^n-\lambda_2^n\over \lambda_1-\lambda_2} ={\lambda_1^n-\lambda_2^n\over 2\sqrt{r}} And A^{n} = k_nA-\lambda_1\lambda_2k_{n-1}I_2 = k_nA-(1-r)k_{n-1}I_2 \Rightarrow \begin{bmatrix}x_{n}\\ y_{n} \end{bmatrix} = (k_nA-(1-r)k_{n-1}I_2)\cdot \begin{bmatrix}a\\ b \end{bmatrix} =\left(\begin{bmatrix}k_n & rk_n\\k_n & k_n \end{bmatrix}-\begin{bmatrix}(1-r)k_{n-1} & 0\\0 & (1-r)k_{n-1} \end{bmatrix}\right) \cdot \begin{bmatrix}a\\ b \end{bmatrix} = \begin{bmatrix}k_n-(1-r)k_{n-1} & rk_n\\k_n & k_n-(1-r)k_{n-1} \end{bmatrix}\cdot \begin{bmatrix}a\\ b \end{bmatrix} =\begin{bmatrix}a(k_n-(1-r)k_{n-1}) + brk_n\\ ak_n + b(k_n-(1-r)k_{n-1}) \end{bmatrix} Since \lim_{n\to\infty}{k_n\over k_{n-1}}=\lim_{n\to\infty}{\lambda_1^{n}-\lambda_2^{n}\over \lambda_1^{n-1}-\lambda_2^{n-1}} = \lim_{n\to\infty} {\lambda_1^n\left(1-\left(\displaystyle{\lambda_2\over\lambda_1} \right)^n\right) \over \lambda_1^{n-1}\left(1-\left(\displaystyle {\lambda_2\over\lambda_1} \right)^{n-1}\right)} = \lambda_1 = 1+\sqrt{r} Thus \lim_{n\to\infty}{x_n\over y_n}=\lim_{n\to\infty} {a(k_n-(1-r)k_{n-1}) + brk_n \over ak_n + b(k_n-(1-r)k_{n-1})} =\lim_{n\to\infty} {a(1+\sqrt{r}-(1-r))+br(1+\sqrt{r}) \over a(1+\sqrt{r}) + b(1+\sqrt{r}-(1-r))} =\lim_{n\to\infty} {a(\sqrt{r} + r) + br(1+\sqrt{r}) \over a(1+\sqrt{r}) + b(\sqrt{r}+r)} =\lim_{n\to\infty}{\sqrt{r}[a(1+\sqrt{r}) + b(\sqrt{r}+r)] \over a(1+\sqrt{r}) + b(\sqrt{r}+r)} = \sqrt{r}
没有评论:
发表评论