Processing math: 100%

Solution Manual of MOOCULUS-2 "Sequences and Series": 3. Convergence tests

The printable textbook of PDF format can be downloaded via MOOCULUS-2 Textbook

The printable solution manual of PDF format can be downloaded via MOOCULUS-2 Solution


Summary
  • Ratio Test
    Consider the series \sum_{n=0}^\infty a_n where each term a_n is positive.
    Suppose that \lim_{n\to \infty} \frac{a_{n+1}}{a_n}=L Then,
    • if L < 1 the series \sum_{n=0}^\infty a_n converges.
    • if L > 1 the series diverges.
    • if L=1 this test is inconclusive.
  • Integral Test
    Suppose that f(x)>0 and is decreasing on the infinite interval [k,\infty) (for some k\ge1) and that a_n=f(n). Then the series \sum_{n=k}^\infty a_n converges if and only if the improper integral \int_{k}^\infty f(x)\,dx converges.
  • p-series
    Recall that a p-series is any series of the form \sum_{n=1}^\infty 1/n^p A p-series converges if and only if p>1.
  • Root Test
    Consider the series \sum_{n=0}^\infty a_n where each term a_n is positive. Suppose that \lim_{n\to \infty} \left(a_n\right)^{1/n}=L Then,
    • if L < 1 the series \sum a_n converges,
    • if L > 1 the series diverges, and
    • if L=1, then the root test is inconclusive.
  • Determine a series convergent or divergent:
    • n^{\text{th}} test, if \lim_{n\to\infty}a_n\neq0 then it diverges; otherwise, using other tests;
    • Comparison test, p-series test, ratio test, integral test, root test, and Cauchy test.

Exercises 3.1


1. Compute \lim_{n\to\infty} |a_{n+1}/a_n| for the series \sum_{n=1}^\infty {1\over n^2}
Solution:
\lim_{n\to\infty} |a_{n+1}/a_n|=\lim_{n\to\infty}{{1\over(n+1)^2}\over{1\over n^2}}=\lim_{n\to\infty}{n^2\over n^2+2n+1}=1
2. Compute \lim_{n\to\infty} |a_{n+1}/a_n| for the series \sum_{n=1}^\infty {1\over n}
Solution:
\lim_{n\to\infty} |a_{n+1}/a_n|=\lim_{n\to\infty}{{1\over n+1}\over{1\over n}}\lim_{n\to\infty}{n\over n+1}=1

Determine whether each of the following series converges or diverges.

3. \sum_{n=0}^\infty (-1)^{n}{3^n\over 5^n}
Solution:
By ratio test, we have \lim_{n\to\infty} |a_{n+1}/a_n|=\lim_{n\to\infty}{3^{n+1}\over 5^{n+1}}\cdot{5^n \over 3^n}={3\over5} < 1 Thus it converges.

4. \sum_{n=1}^\infty {n!\over n^n}  
Solution:
By ratio test, we have
\lim_{n\to\infty} a_{n+1}/a_n=\lim_{n\to\infty}{(n+1)!\over(n+1)^{n+1}}\cdot{n^n\over n!}=\lim_{n\to\infty}{n^n\over(n+1)^n}=\lim_{n\to\infty}({n\over n+1})^n On the other hand, \lim_{n\to\infty}(1+{1\over n})^n=e Thus \lim_{n\to\infty}({n\over n+1})^n={1\over e} < 1 Therefore it converges.

5. \sum_{n=1}^\infty {n^5\over n^n}
Solution:
By ratio test, we have
\lim_{n\to\infty} a_{n+1}/a_n=\lim_{n\to\infty} {(n+1)^5\over(n+1)^{n+1}}\cdot{n^n\over n^5} =\lim_{n\to\infty}({n+1 \over n})^5\cdot({n\over n+1})^n\cdot{1\over n+1}=1\times{1\over e}\times0=0 < 1 Thus it converges.

6. \sum_{n=1}^\infty {(n!)^2\over n^n}  
Solution:
By ratio test, we have \lim_{n\to\infty} a_{n+1}/a_n=\lim_{n\to\infty}{((n+1)!)^2\over (n+1)^{n+1}}\cdot{n^n\over(n!)^2} =\lim_{n\to\infty}{(n+1)^2\over(n+1)^{n+1}}\cdot n^n=\lim_{n\to\infty}(n+1)\cdot({n\over n+1})^n={1\over e}\cdot\lim_{n\to\infty}(n+1)\to\infty Thus it diverges.


Exercises 3.2

Determine whether each series converges or diverges.

1. \sum_{n=1}^\infty {1\over n^{\pi/4}}
Solution:
p-series, and {\pi\over4} < 1 so it diverges.

2. \sum_{n=1}^\infty {n\over n^2+1} Solution:
By integral test, we have
\int_{1}^\infty {n\over n^2+1}\,dn={1\over2}\int_{1}^{\infty}{d(n^2+1)\over n^2+1}={1\over2}\ln(n^2+1)\Big|_{1}^{\infty}\to\infty Thus it diverges.

3. \sum_{n=1}^\infty {\ln n\over n^2}
Solution:
By integral test, we have u=\ln n,\ dv={1\over n^2}dn\Rightarrow du={1\over n}dn,\ v=-{1\over n} \int_{1}^{\infty}{\ln n\over n^2}dn=-{\ln n\over n}\Big|_{1}^{\infty}+\int_{1}^{\infty}{1\over n^2}dn=-{\ln n\over n}\Big|_{1}^{\infty}-{1\over n}\Big|_{1}^{\infty}=0-(-1)=1 Thus it converges.

4. \sum_{n=1}^\infty {1\over n^2+1}
Solution:
p-series test, we have \sum_{n=1}^\infty {1\over n^2+1}<\sum_{n=1}^\infty {1\over n^2}\to\text{converges} Thus it converges.

5. \sum_{n=1}^\infty {1\over e^n}  
Solution:
This is geometric series and {1\over e}< 1 , thus it converges.

 6. \sum_{n=1}^\infty {n\over e^n}  
Solution:
By ratio test, we have
\lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}{n+1\over e^{n+1}}\cdot{e^n\over n}={1\over e}\lim_{n\to\infty}(1+{1\over n})={1\over e} < 1 Thus it converges.

7. \sum_{n=2}^\infty {1\over n\ln n}  
Solution:
By integral test, we have
\int_{2}^{\infty}{1\over n\ln n} dn=\int_{2}^{\infty}{d(\ln n)\over\ln n}=\ln(\ln n)\Big|_{2}^{\infty}\to\infty Thus it diverges.

8. \sum_{n=2}^\infty {1\over n(\ln n)^2}
Solution:
By integral test, we have
\int_{2}^{\infty}{1\over n(\ln n)^2}dn=\int_{2}^{\infty}{d(\ln n)\over(\ln n)^2}=-{1\over\ln n}\Big|_{2}^{\infty}={1\over\ln2} Thus it converges.

9. Find an N so that \sum_{n=1}^\infty {1\over n^4} is between \sum_{n=1}^N {1\over n^4} and \sum_{n=1}^N {1\over n^4} + 0.005
Solution:
For a series \{a_n\}, we define a continuous function f(x) where f(n)=a_n. And we have R_n=\sum_{i=n+1}^{\infty}a_i=a_{n+1}+a_{n+2}+a_{n+3}+\cdots Thus the series s=\sum_{i=1}^{\infty}a_1+a_2+\cdots+a_n+a_{n+1}+\cdots =s_n+R_n=\sum_{i=1}^{n}a_i+\sum_{i=n+1}^{\infty}a_i Particularly, \int_{n+1}^{\infty}f(x)dx < R_n < \int_{n}^{\infty}f(x)dx Hence s_n+\int_{n+1}^{\infty}f(x)dx < s < s_n+\int_{n}^{\infty}f(x)dx For this question, we have \int_{n+1}^{\infty}{1\over x^4}dx < R_n < 0.005 \Rightarrow -{1\over3}\cdot{1\over x^3}\Big|_{n+1}^{\infty}={1\over3}\cdot{1\over (n+1)^3} < 0.005 \Rightarrow n\geq4 R code:
## Q9
f = function(x) 1 / x^4
n = 1e7
limit = sum(f(x = 1:1e7))
for (i in 1:n){
  if(sum(f(x = 1:i)) < limit & limit < sum(f(x = 1:i)) + 0.005){
    print(i)
    break
  }
}
# [1] 4
10. Find an N so that \sum_{n=0}^\infty {1\over e^n} is between \sum_{n=0}^N {1\over e^n} and \sum_{n=0}^N {1\over e^n} + 10^{-4}  
Solution: \int_{n+1}^{\infty}{1\over e^x}dx < {1\over 10^4}\Rightarrow -e^{-x}\Big|_{n+1}^{\infty}=e^{-(n+1)} < 10^{-4} \Rightarrow e^{n+1} > 10^4\Rightarrow n+1 > 4\ln10\Rightarrow n\geq9 R code:
## Q10
## Q10
f = function(x) 1 / exp(x)
n = 1e7
limit = sum(f(x = 0:1e7))
for (i in 0:n){
  if(sum(f(x = 0:i)) < limit & limit < sum(f(x = 0:i)) + 1e-4){
    print(i)
    break
  }
}
# [1] 9
11. Find an N so that \sum_{n=1}^\infty {\ln n\over n^2} is between \sum_{n=1}^N {\ln n\over n^2} and \sum_{n=1}^N {\ln n\over n^2} + 0.005  
Solution:
R code:
## Q11
f = function(x) log(x) / x^2
n = 1e7
limit = sum(f(x = 1:1e7))
for (i in 1:n){
  if(sum(f(x = 1:i)) < limit & limit < sum(f(x = 1:i)) + 0.005){
    print(i)
    break
  }
}
# [1] 1685
12. Find an N so that \sum_{n=2}^\infty {1\over n(\ln n)^2} is between \sum_{n=2}^N {1\over n(\ln n)^2} and \sum_{n=2}^N {1\over n(\ln n)^2} + 0.005
Solution:
\int_{n+1}^{\infty}{1\over x\cdot(\ln x)^2}dx < 0.005 \Rightarrow -{1\over\ln x}\Big|_{n+1}^{\infty}={1\over\ln(n+1)} < 0.005 \Rightarrow n+1 > e^{200}\Rightarrow n\geq e^{200}


Exercises 3.3

Determine whether the series converge or diverge.

1. \sum_{n=1}^\infty {1\over 2n^2+3n+5}
Solution:
When n\geq1 {1\over 2n^2+3n+5} < {1\over 2n^2}\to\text{converge} By p-series test and comparison test, it converges.

2. \sum_{n=2}^\infty {1\over 2n^2+3n-5} Solution:
When n\geq2 {1\over 2n^2+3n-5} < {1\over 2n^2}\to\text{converge} By p-series test and comparison test, it converges.

3. \sum_{n=1}^\infty {1\over 2n^2-3n-5} Solution:
When n\geq5 {1\over 2n^2-3n-5}={1\over n^2+(n^2-3n-5)} < {1\over n^2}\to\text{converge} By p-series test and comparison test, it converges.

4. \sum_{n=1}^\infty {3n+4\over 2n^2+3n+5} Solution:
\int_{1}^{\infty}{3x+4\over 2x^2+3x+5}dx > \int_{1}^{\infty}{3x+{9\over4}\over 2x^2+3x+5}dx={3\over4}\cdot\int_{1}^{\infty}{d(2x^2+3x+5)\over 2x^2+3x+5} ={3\over4}\cdot\ln(2x^2+3x+5)\Big|_{1}^{\infty}\to\infty By integral test and comparison test, it diverges.

5. \sum_{n=1}^\infty {3n^2+4\over 2n^2+3n+5}
Solution:
\lim_{n\to\infty}{3n^2+4\over 2n^2+3n+5}={3\over2}\neq0 By n^{\text{th}} test, it diverges.

6. \sum_{n=1}^\infty {\log n\over n}
Solution:
When n > e {\log n\over n}>{1\over n}\to\text{diverge} By p-series test and comparison test, it diverges.

7. \sum_{n=1}^\infty {\log n\over n^3}
Solution:
Set u=\log x, dv={dx\over x^3}, so du={dx\over x}, v=-{1\over2}\cdot{1\over x^2}. \int_{1}^{\infty}{\log x\over x^3}dx=-{1\over2}\cdot{1\over x^2}\cdot\log x\Big|_{1}^{\infty}+{1\over2}\int_{1}^{\infty}{dx\over x^3} =-{1\over2}\cdot{1\over x^2}\cdot\log x\Big|_{1}^{\infty}-{1\over4}\cdot{1\over x^2}\Big|_{1}^{\infty}={1\over4}\to\text{converge} By integral test, it converges.

8. \sum_{n=2}^\infty {1\over \log n}
Solution:
\log n < n\Rightarrow {1\over\log n} > {1\over n}\to\text{diverge} By p-series test and comparison test, it diverges.

9. \sum_{n=1}^\infty {3^n\over 2^n+5^n}
Solution:
\lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}{3^{n+1}\over 2^{n+1}+5^{n+1}}\cdot{2^n+5^n \over 3^n} =3\cdot\lim_{n\to\infty}{2^n+5^n \over 2^{n+1}+5^{n+1}}=3\cdot\lim_{n\to\infty}{({2\over5})^n+1 \over 2\cdot({2\over5})^n+5}={3\over5} < 1 By ratio test, it converges.

10. \sum_{n=1}^\infty {3^n\over 2^n+3^n} Solution:
\lim_{n\to\infty}{3^n\over 2^n+3^n}=\lim_{n\to\infty}{1\over ({2\over3})^n+1}=1\neq0 By n^{\text{th}} test, it diverges.


Exercises 3.4

1. Prove the root test theorem.

Solution:
First, prove when L < 1 it converges. There should be an r such that L < r < 1, and there exists some n, when n < N we have {a_n}^{{1\over n}}=L < r < 1\Rightarrow a_n < r^n\to\text{converge} Note that the last expression is a geometric series. By comparison test, \{a_n\} converges. 

Secondly we prove when L > 1 it diverges.
There exists some n > N we have {a_n}^{{1\over n}}=L > 1\Rightarrow a_n > 1^n=1 which means \lim_{n\to\infty}a_n > 1\neq0 By n^{\text{th}} test, it diverges.
Lastly, when L=1 it is inconclusive. Such as

  • \lim_{n\to\infty}({1\over n})^{{1\over n}}=1, and it diverges.
  • \lim_{n\to\infty}({1\over n^2})^{{1\over n}}=1, and it converges.
2. Compute \lim_{n\to\infty} |a_n|^{1/n} for the series \sum 1/n^2.

Solution:
\lim_{n\to\infty} ({1\over n^2})^{1/n}=1 But it converges by p-series test.

3. Compute \lim_{n\to\infty} |a_n|^{1/n} for the series \sum 1/n.

Solution:
\lim_{n\to\infty} ({1\over n})^{1/n}=1 By p-series test, it converges.


Additional Exercises

Determine whether the series converge or diverge.

1. \sum_{n=6}^{\infty}{15^n \over 3^{3n+3}\cdot(3n+4)}
Solution:
\lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}{15^{n+1}\over 3^{3n+6}\cdot(3n+7)}\cdot{3^{3n+3}\cdot(3n+4)\over 15^n} =\lim_{n\to\infty}{15\cdot(3n+4)\over 27\cdot(3n+7)}={5\over9} < 1 By ratio test, it converges.

2. \sum_{k=8}^{\infty}{(k+2)\cdot k!\over 4^k} Solution:
\lim_{k\to\infty}a_{n+1}/a_n=\lim_{k\to\infty}{(k+3)\cdot(k+1)!\over4^{k+1}}\cdot{4^{k}\over(k+2)\cdot k!}=\lim_{k\to\infty}{(k+3)(k+1)\over4(k+2)}\to\infty By ratio test, it diverges.

3. \sum_{n=1}^{\infty}{10^n\cdot n!\over(9n)^n}
Solution:
\lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}{10^{n+1}\cdot(n+1)!\over9^{n+1}\cdot(n+1)^{n+1}}\cdot{9^n\cdot n^n\over10^n\cdot n!} =\lim_{n\to\infty}{10(n+1)\cdot n^n\over9(n+1)^{n+1}}={10\over9}\cdot({n\over n+1})^n={10\over9}\cdot{1\over e} < 1 By ratio test, it converges.

 4. \sum_{k=3}^{\infty}{3\over7k^{1.88}} Solution:
\sum_{k=3}^{\infty}{3\over7k^{1.88}}=\sum_{k=3}^{\infty}{3\over7}\cdot{1\over k^{1.88}} By p-series test, it converges.

5. \sum_{i=6}^{\infty}{i-2\over i^5+3i}
Solution:
{i-2\over i^5+3i} < {i\over i^5+3i} < {i\over i^5}={1\over i^4} By p-series test and comparison test, it converges.

6. \sum_{m=2}^{\infty}({7m+5 \over 6m+5})^m Solution:
\lim_{m\to\infty}{a_m}^{{1\over m}}=\lim_{m\to\infty}{7m+5\over 6m+5}={7\over6} > 1 By root test, it diverges.

7. \int_{2}^{\infty}{4\over (4x+1)^2}dx={1\over9}
What is the interval of \sum_{k=2}^{\infty}{4\over(4k+1)^2}
Solution:
Since \int_{m}^{\infty}f(x)dx \leq \sum_{n=m}^{\infty}a_n \leq a_m+\int_{m}^{\infty}f(x)dx That is \int_{2}^{\infty}{4\over(4x+1)^2}dx\leq\sum_{k=2}^{\infty}{4\over(4k+1)^2}\leq a_2+\int_{2}^{\infty}{4\over(4x+1)^2}dx \Rightarrow {1\over9}\leq s_k\leq{4\over81}+{1\over9}={13\over81} Thus the interval is [{1\over9},\ {13\over81}].









没有评论:

发表评论