Processing math: 100%

Solution Manual of MOOCULUS-2 "Sequences and Series": 2. Series

The printable textbook of PDF format can be downloaded via MOOCULUS-2 Textbook

The printable solution manual of PDF format can be downloaded via MOOCULUS-2 Solution


Summary
  • Suppose (a_n) is a sequence with associated series \sum_{k=1}^\infty a_k The sequence of partial sums associated to these objects is the sequence s_n = \sum_{k=1}^n a_k
  • Consider the series \sum_{k=1}^\infty a_k This series converges if the sequence of partial sums s_n = \sum_{k=1}^n a_k converges. More precisely, if \lim_{n \to \infty} s_n = L we then write \sum_{k=1}^\infty a_k = L and say, "the series \sum_{k=1}^\infty a_k converges to L."

    If the sequence of partial sums diverges, we say that the series diverges.
  • A series of the form \sum_{k=0}^\infty a_0 \, r^k is called a geometric series.
  • Suppose a_0 \neq 0. Then for a real number r such that |r| < 1, the geometric series \sum_{k=0}^\infty a_0\, r^k converges to \frac{a_0}{1-r}.

    For a real number r where |r| \geq 1, the aforementioned geometric series diverges.
  • Consider the series \sum_{k=0}^\infty a_k and suppose c is a nonzero constant. Then \sum_{k=0}^\infty a_k and \sum_{k=0}^\infty c\,a_k share a common fate: either both series converge, or both series diverge.

    Moreover, when \sum_{k=0}^\infty a_k converges, \sum_{k=0}^\infty c \, a_k = c \cdot \sum_{k=0}^\infty a_k
  • Suppose \sum_{k=0}^\infty a_k and \sum_{k=0}^\infty b_k are convergent series. Then \sum_{k=0}^\infty (a_k+b_k) is convergent, and
    \sum_{k=0}^\infty (a_k+b_k)=\left( \sum_{k=0}^\infty a_k\right)+\left(\sum_{k=0}^\infty b_k\right)
  • If \sum_{k=0}^\infty a_k converges then \lim_{n\to\infty}a_n=0
  • Consider the series \sum_{k=0}^\infty a_k If the limit \lim_{n\to\infty}a_n does not exist or has a value other than zero, then the series diverges.

    We'll usually call this theorem the "n^{\text{th}} term test."
  • The series \sum_{n=1}^\infty {1\over n} = \frac{1}{1} +\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots is called the harmonic series.
  • Consider the series \sum_{k=0}^\infty a_k Assume the terms a_k are non-negative. If the sequence of partial sums s_n = a_0 + \cdots + a_n is bounded, then the series converges.
  • Comparison Test

    Suppose that a_n and b_n are non-negative for all n and that, for some N, whenever n \geq N, we have a_n \leq b_n.

    If \sum_{n=0}^\infty b_n converges, so does \sum_{n=0}^\infty a_n If \sum_{n=0}^\infty a_n diverges, so does \sum_{n=0}^\infty b_n
  • Cauchy Condensation Test

    Suppose (a_n) is a non-increasing sequence of positive numbers. The series \sum_{n=1}^\infty a_n converges if and only if the series \sum_{n=0}^\infty \left( 2^n a_{2^n} \right) converges.
  • p-series Test
    \sum_{n=1}^{\infty} {1\over n^p}\ \begin{cases}\mbox{converges} & \mbox{when $p>1$}\\ \mbox{diverges} & \mbox{when $p\leq1$} \end{cases}
Exercises 2.7


1. Explain why \sum_{n=1}^\infty {n^2\over 2n^2+1} diverges.

Solution:
By n^{\text{th}} test, \lim_{n\to\infty} {n^2\over 2n^2+1}={1\over2}\neq0
Therefore it diverges.

2. Explain why \sum_{n=1}^\infty {5\over 2^{1/n}+14} diverges.

Solution:
By n^{\text{th}} test, \lim_{n\to\infty} {5\over 2^{1\over n}+14}={5\over1+14}={1\over3}\neq0 Thus it diverges.

3. Explain why \sum_{n=1}^\infty {3\over n} diverges.

Solution:
\sum_{n=1}^\infty {3\over n}=3\cdot\sum_{n=1}^{\infty}{1\over n} which is a harmonic series.

4. Compute \sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}
Solution:
Geometric series:
\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}
=\sum_{n=0}^{\infty} 4\cdot(-{1\over3})^n-3\cdot({1\over3})^n
=4\cdot{1\over 1-(-{1\over3})}-3\cdot{1\over 1-{1\over3}}
=4\times{3\over4}-3\times{3\over2}=-{3\over2}
5. Compute \sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}
Solution:
Geometric series:
\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}
= 3\cdot{1\over 1-{1\over2}}+4\cdot{1\over 1-{1\over5}}=6+5=11
6. Compute \sum_{n=0}^\infty {4^{n+1}\over 5^n}
Solution:
Geometric series:
\sum_{n=0}^\infty {4^{n+1}\over 5^n}
=\sum_{n=0}^{\infty}4\cdot({4\over5})^n=4\times{1\over 1-{4\over5}}=20
7. Compute \sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}
Solution:
Geometric series:
\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}
=\sum_{n=0}^\infty {3\over7}\cdot{3^{n}\over 7^{n}}={3\over7}\times{1\over 1-{3\over7}}={3\over4}
8. Compute \sum_{n=1}^\infty \left({3\over 5}\right)^n
Solution:
Geometric series:
\sum_{n=1}^\infty \left({3\over 5}\right)^n
=\sum_{n=0}^\infty \left({3\over 5}\right)^n-1
={1\over 1-{3\over5}}-1={3\over2}
Alternatively, \sum_{n=1}^\infty \left({3\over 5}\right)^n={{3\over5}\over 1-{3\over5}}={3\over2}
9. Compute \sum_{n=1}^\infty {3^n\over 5^{n+1}}
Solution:
Geometric series:
\sum_{n=1}^\infty {3^n\over 5^{n+1}}
=\sum_{n=0}^\infty {1\over5}\cdot{3^n\over 5^{n}}-{1\over5}
={1\over5}\times{1\over 1-{3\over5}}-{1\over5}={3\over10}
Alternatively, \sum_{n=1}^\infty {3^n\over 5^{n+1}}={1\over5}\times{{3\over5}\over 1-{3\over5}}={3\over10}


Additional Exercises


1. Evaluate \sum_{n=5}^{\infty}(-{4\over7})^n
Solution:
Geometric series:
\sum_{n=5}^{\infty}(-{4\over7})^n={(-{4\over7})^5\over 1-(-{4\over7})}=-{1024\over26411}
2. Test \sum_{n=2}^{\infty}-8\cdot({6\over11})^n
Solution:
\sum_{n=2}^{\infty}-8\cdot({6\over11})^n=-8\cdot\sum_{n=2}^{\infty}({6\over11})^n which is a geometric series and r < 1, therefore it converges.

3. Evaluate \sum_{i=2}^{\infty}{12\over 9i^2+21i+10} Solution:
\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}=\sum_{i=2}^{\infty}{12\over (3i+5) (3i+2)}
=\sum_{i=2}^{\infty}4\cdot({1\over 3i+2}-{1\over 3i+5})=4\times{1\over8}={1\over2}
4. Test \sum_{m=3}^{\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}
Solution:
By n^{\text{th}} test: \lim_{m\to\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}={7\over25}\neq0
Thus it diverges.

5. Test \sum_{n=0}^{\infty}{5\over 7n+42}
Solution:
\sum_{n=0}^{\infty}{5\over 7n+42}={5\over7}\cdot\sum_{n=0}^{\infty}{1\over n+6} which is a harmonic series. Thus it diverges.

6. Test \sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}
Solution:
Comparison test:
\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}=\sum_{n=5}^{\infty}{2n^2+4\over 7^n}\leq\sum_{n=5}^{\infty}{2^n\over 7^n},\ \text{when}\ n\geq7
And \sum_{n=5}^{\infty}{2^n\over 7^n}=\sum_{n=5}^{\infty}({2\over7})^n
is a geometric series which is convergent. Thus \sum_{n=5}^{\infty}{2(n^2+2)\over 7^n} is convergent, too.






没有评论:

发表评论