Processing math: 100%

Solution Manual of MOOCULUS-2 "Sequences and Series": 6. Power series

The printable textbook of PDF format can be downloaded via MOOCULUS-2 Textbook

The printable solution manual of PDF format can be downloaded via MOOCULUS-2 Solution


Summary
  • Let (a_n) be a sequence of real numbers starting with a_0. Then the power series associated to (a_n) is \sum_{n=0}^\infty a_n \, x^n.

    Note that a_n does not depend on x.
  • The set of values of x for which the series \sum_{n=0}^\infty a_n \, x^n
    converges is the interval of convergence.
    That is, by ratio test we have \lim_{n\to\infty}{|a_{n+1}\cdot x^{n+1}|\over|a_n\cdot x^{n}|}=|x|\cdot\lim_{n\to\infty}{|a_{n+1}|\over|a_n|} < 1
    it will converge. Technically, {1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over |a_n|}
  • For a power series, the interval of convergence is, in fact, an interval. It has the form (-R,R) or [-R,R) or (-R,R] or [-R,R]. In short, it is centered around 0.
  • In the interval of convergence of a power series, the value R is called the radius of convergence of the series.
  • Let (a_n) be a sequence of real numbers starting with a_0. Then the power series centered at c and associated to (a_n) is the series
    \sum_{n=0}^\infty a_n \, (x-c)^n.
    That is, the interval of convergence is I=(c-R, c+R) (or include the endpoints).
  • Suppose the power series f(x)=\sum_{n=0}^\infty a_n(x-a)^n=a_0+a_1\cdot(x-a)+a_2\cdot(x-a)^2+\cdots
    has radius of convergence R. Then f'(x)=a_1+2a_2\cdot(x-a)+\cdots=\sum_{n=1}^\infty na_n(x-a)^{n-1}
    \int f(x)\,dx = C+\sum_{n=0}^\infty {a_n\over n+1}(x-a)^{n+1}

    for interval of x in the interval (a-R, a+R). These two new series have radius of convergence R, just like the original series.

Exercises 6.3

Find the radius and interval of convergence for each series. In exercises 3 and 4, do not attempt to determine whether the endpoints are in the interval of convergence.

1. \sum_{n=0}^\infty n x^n
 
Solution:
{1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n+1\over n}=1
Thus R=1. When x=\pm1, the series are \sum_{n=0}^{\infty}n and \sum_{n=0}^{\infty}(-1)^n\cdot n, which are diverge. Therefore the interval of convergence is I=(-1, 1).

2. \sum_{n=0}^\infty {x^n\over n!}
 
Solution:
{1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n!\over (n+1)!}=\lim_{n\to\infty}{1\over n+1}=0
Thus R=\infty and the interval of convergence is I=(-\infty, \infty).

3. \sum_{n=1}^\infty {n!\over n^n}x^n
 
Solution:
{1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{(n+1)!\over(n+1)^{n+1}}\cdot{n^n\over n!}=\lim_{n\to\infty}({n\over n+1})^n={1\over e}
Thus R=e and the interval of convergence is I=(-e, e).

4. \sum_{n=1}^\infty {n!\over n^n}(x-2)^n
 
Solution:
{1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{(n+1)!\over(n+1)^{n+1}}\cdot{n^n\over n!}=\lim_{n\to\infty}({n\over n+1})^n={1\over e}
Thus R=e and the interval of convergence is I=(2-e, 2+e).

5. \sum_{n=1}^\infty {(n!)^2\over n^n}(x-2)^n
 
Solution:
{1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{[(n+1)!]^2\over(n+1)^{n+1}}\cdot{n^n\over(n!)^2}=\lim_{n\to\infty}{(n+1)^2\over(n+1)^{n+1}}\cdot n^n
=\lim_{n\to\infty}(n+1)\cdot({n\over n+1})^n={1\over e}\cdot\lim_{n\to\infty}(n+1)=\infty
Thus R=0 and it converges only on x=2 and diverges otherwise.

6. \sum_{n=1}^\infty {(x+5)^n\over n(n+1)}

Solution:
{1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n(n+1)\over(n+1)(n+2)}=1
Thus R=1 and the endpoints are x_1=-5-1=-6 and x_2=-5+1=-4. Both of them are convergent. So the interval of convergence is I=[-6, -4].

7. Find a power series with radius of convergence 0.  

Solution:
There are many choices---for instance, see Exercise 5---alternatively \sum_{n=0}^\infty n! \cdot x^n also works.


Exercises 6.4

1. Find a series representation for \log 2.

Solution:
Begin with the geometric series, namely {1\over1-x}=\sum_{n=0}^{\infty}x^n\Rightarrow \int {1\over1-x}dx=-\log|1-x|=\sum_{n=0}^{\infty}{1\over n+1}x^{n+1}
So x=-1 and the result is \log2=-\sum_{n=0}^{\infty}{(-1)^{n+1}\over n+1}=\sum_{n=0}^{\infty}{(-1)^{n}\over n+1}

2. Find a power series representation for 1/(1-x)^2.

Solution:
{1\over1-x}=\sum_{n=0}^{\infty}x^n\Rightarrow ({1\over1-x})'={1\over(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}

3. Find a power series representation for 2/(1-x)^3.

Solution:
{1\over1-x}=\sum_{n=0}^{\infty}x^n\Rightarrow ({1\over1-x})'={1\over(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}
\Rightarrow ({1\over1-x})''={2\over(1-x)^3}=\sum_{n=2}^{\infty}n(n-1)x^{n-2}

4. Find a power series representation for 1/(1-x)^3. What is the radius of convergence?

Solution:
According to the above exercise, we have {1\over(1-x)^3}=\sum_{n=2}^{\infty}{n(n-1)\over2}x^{n-2}=\sum_{n=0}^{\infty}{(n+1)(n+2)\over2}x^{n}
And {1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{(n+2)(n+3)\over(n+1)(n+2)}=1
Thus the radius is R=1.

5. Find a power series representation for \int\log(1-x)\,dx.

Solution:
\log(1-x)=-\int {1\over1-x}dx=-\int\sum_{n=0}^{\infty}x^n dx=\sum_{n=0}^{\infty}{-1\over n+1}x^{n+1}

\Rightarrow \int\log(1-x)dx=\int\sum_{n=0}^{\infty}{-1\over n+1}x^{n+1}dx=C+\sum_{n=0}^{\infty}{-1\over(n+1)(n+2)}x^{n+2}



Additional Exercises

1. For which real number x does the series \sum_{m=4}^{\infty}{({1\over6})^m\cdot x^m\over7m}
converge.

Solution:
Let a_m={({1\over6})^m\over7m}, we have {1\over R}=\lim_{m\to\infty}{|a_{m+1}|\over |a_m|}=\lim_{m\to\infty}{({1\over6})^{m+1}\over7(m+1)}\cdot{7m\over({1\over6})^m}={1\over6}
Thus R=6. The endpoints are x_1=-6 and x_2=6.
When x=-6, we have \sum_{m=4}^{\infty}{({1\over6})^m\cdot x^m\over7m}=\sum_{m=4}^{\infty}{(-1)^m\over7m}
which is an alternating harmonic series, and it converges.
When x=6, we have \sum_{m=4}^{\infty}{({1\over6})^m\cdot x^m\over7m}=\sum_{m=4}^{\infty}{1\over7m}
which is harmonic series, and it diverges.
Thus the interval of converges is I=[-6, 6).

2. Which is the radius of convergence of the series \sum_{n=4}^{\infty}{(8^n+n)\cdot x^n\over3n}

Solution:
Let a_n={8^n+n\over3n}, we have {1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{8^{n+1}+n+1\over3(n+1)}\cdot{3n\over 8^n+n}=8
Thus the radius is R={1\over8}.

3. f(x)=\sum_{n=0}^{\infty}-{(5n+3)x^n\over2n-3}
Consider f'(x).

Solution:
f'(x)=\sum_{n=1}^{\infty}-{5n+3\over2n-3}\cdot n\cdot x^{n-1}=\sum_{n=0}^{\infty}-{5(n+1)+3\over2(n+1)-3}\cdot (n+1)\cdot x^{n+1-1}
=\sum_{n=0}^{\infty}-{5n+8\over2n-1}\cdot (n+1)\cdot x^{n}

4. Suppose \sum_{n=1}^{\infty}b_n={2\over(2x-1)^2}
Find an expression of b_n (involve x).

Solution:
Let F(x)=\sum_{n=1}^{\infty}b_n={2\over(2x-1)^2}, we have \int F(x)=\int {2\over(2x-1)^2} dx=\int{d(2x-1)\over(2x-1)^2}={1\over1-2x}=f(x)

On the other hand, f(x)={1\over1-2x}=\sum_{n=0}^{\infty}(2x)^n
Thus F(x)=f'(x)=\sum_{n=1}^{\infty}2^n\cdot n\cdot x^{n-1}
\Rightarrow b_n=2^n\cdot n\cdot x^{n-1}

5. Suppose \sum_{n=1}^{\infty}b_n={9x\over(9x^2-1)^2}
Find an expression of b_n (involve x).

Solution:
Let F(x)=\sum_{n=1}^{\infty}b_n={9x\over(9x^2-1)^2}, we have \int F(x)=\int {9x\over(9x^2-1)^2}dx={1\over2}\cdot\int {d(9x^2-1)\over(9x^2-1)^2}={1\over2}\cdot{1\over1-9x^2}=f(x)
On the other hand, f(x)={1\over2}\cdot\sum_{n=0}^{\infty}(9x^2)^n
Thus F(x)=f'(x)={1\over2}\cdot\sum_{n=1}^{\infty}9^n\cdot 2n\cdot x^{2n-1}
\Rightarrow b_n=9^n\cdot n\cdot x^{2n-1}

6. Consider the function f(t)=\int_{0}^{t}e^{-x^2}dx
Compute f({3\over2}) to within {1\over2}.

Solution:
Note that the power series (Taylor series) of e^x is e^x=\sum_{n=0}^{\infty}{x^n\over n!}
Thus we have e^{-x^2}=\sum_{n=0}^{\infty}{{(-x^2)}^n\over n!}=\sum_{n=0}^{\infty}{(-1)^n\cdot x^{2n}\over n!}
\Rightarrow f(t)=\int_{0}^{t}e^{-x^2}dx=\int_{0}^{t}\sum_{n=0}^{\infty}{(-1)^n\cdot x^{2n}\over n!}dx
=\sum_{n=0}^{\infty}{(-1)^n\over n!}\cdot\int_{0}^{t}x^{2n}dx=\sum_{n=0}^{\infty}{(-1)^n\over n!}\cdot{1\over 2n+1}x^{2n+1}\Big|_{0}^{t}
=\sum_{n=0}^{\infty}{(-1)^n\over n!}\cdot{1\over 2n+1}t^{2n+1}
\Rightarrow f({3\over2})=\sum_{n=0}^{\infty}{(-1)^n\over n!}\cdot{1\over 2n+1}({3\over2})^{2n+1}=a_n
Our aim is to find an |a_n| < 0.5 and by computing in R:
f = function(x) (-1)^x / factorial(x) * 1 / (2 * x + 1) * (3/2)^(2 * x + 1)
for (i in 0:100) {
  if (f(i) < 0.5 & f(i) > -0.5) {
    print(i)
    print(f(x = 0:i))
    print((sum(f(0:i)) + sum(f(0:(i-1)))) / 2) 
    break
  }
}
# [1] 3
# [1]  1.500000 -1.125000  0.759375 -0.406808
# [1] 0.930971
That is, a_0=1.5,\ a_1=-1.125,\ a_2=0.759375,\ a_3=-0.406808 \in (-0.5, 0.5)
Thus the value within 0.5 is {1\over2}\cdot (s_2+s_3)=0.930971



没有评论:

发表评论